Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{x+2}+\frac{\left(-x-2\right)\left(x+2\right)}{x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -x-2 ki te \frac{x+2}{x+2}.
\frac{1+\left(-x-2\right)\left(x+2\right)}{x+2}
Tā te mea he rite te tauraro o \frac{1}{x+2} me \frac{\left(-x-2\right)\left(x+2\right)}{x+2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1-x^{2}-2x-2x-4}{x+2}
Mahia ngā whakarea i roto o 1+\left(-x-2\right)\left(x+2\right).
\frac{-3-x^{2}-4x}{x+2}
Whakakotahitia ngā kupu rite i 1-x^{2}-2x-2x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+2}+\frac{\left(-x-2\right)\left(x+2\right)}{x+2})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -x-2 ki te \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x-2\right)\left(x+2\right)}{x+2})
Tā te mea he rite te tauraro o \frac{1}{x+2} me \frac{\left(-x-2\right)\left(x+2\right)}{x+2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}-2x-2x-4}{x+2})
Mahia ngā whakarea i roto o 1+\left(-x-2\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3-x^{2}-4x}{x+2})
Whakakotahitia ngā kupu rite i 1-x^{2}-2x-2x-4.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}-4x^{1}-3)-\left(-x^{2}-4x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+2\right)\left(2\left(-1\right)x^{2-1}-4x^{1-1}\right)-\left(-x^{2}-4x^{1}-3\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+2\right)\left(-2x^{1}-4x^{0}\right)-\left(-x^{2}-4x^{1}-3\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Whakarūnātia.
\frac{x^{1}\left(-2\right)x^{1}+x^{1}\left(-4\right)x^{0}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}-4x^{1}-3\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Whakareatia x^{1}+2 ki te -2x^{1}-4x^{0}.
\frac{x^{1}\left(-2\right)x^{1}+x^{1}\left(-4\right)x^{0}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}x^{0}-4x^{1}x^{0}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Whakareatia -x^{2}-4x^{1}-3 ki te x^{0}.
\frac{-2x^{1+1}-4x^{1}+2\left(-2\right)x^{1}+2\left(-4\right)x^{0}-\left(-x^{2}-4x^{1}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-2x^{2}-4x^{1}-4x^{1}-8x^{0}-\left(-x^{2}-4x^{1}-3x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Whakarūnātia.
\frac{-x^{2}-4x^{1}-5x^{0}}{\left(x^{1}+2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{2}-4x-5x^{0}}{\left(x+2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-x^{2}-4x-5}{\left(x+2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.