Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{x+2}-\frac{x+2}{x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+2}{x+2}.
\frac{1-\left(x+2\right)}{x+2}
Tā te mea he rite te tauraro o \frac{1}{x+2} me \frac{x+2}{x+2}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-x-2}{x+2}
Mahia ngā whakarea i roto o 1-\left(x+2\right).
\frac{-1-x}{x+2}
Whakakotahitia ngā kupu rite i 1-x-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+2}-\frac{x+2}{x+2})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-\left(x+2\right)}{x+2})
Tā te mea he rite te tauraro o \frac{1}{x+2} me \frac{x+2}{x+2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x-2}{x+2})
Mahia ngā whakarea i roto o 1-\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-1-x}{x+2})
Whakakotahitia ngā kupu rite i 1-x-2.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-1)-\left(-x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+2\right)\left(-1\right)x^{1-1}-\left(-x^{1}-1\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+2\right)\left(-1\right)x^{0}-\left(-x^{1}-1\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\left(-1\right)x^{0}+2\left(-1\right)x^{0}-\left(-x^{1}x^{0}-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-x^{1}+2\left(-1\right)x^{0}-\left(-x^{1}-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-x^{1}-2x^{0}-\left(-x^{1}-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Mahia ngā tātaitanga.
\frac{-x^{1}-2x^{0}-\left(-x^{1}\right)-\left(-x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(-1-\left(-1\right)\right)x^{1}+\left(-2-\left(-1\right)\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-x^{0}}{\left(x^{1}+2\right)^{2}}
Tangohia te -1 i -1 me te -1 i te -2.
\frac{-x^{0}}{\left(x+2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-1}{\left(x+2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.