Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2+\left(x+2\right)x=x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
3x-2+x^{2}=x
Pahekotia te x me 2x, ka 3x.
3x-2+x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
2x-2+x^{2}=0
Pahekotia te 3x me -x, ka 2x.
x^{2}+2x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-2\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-2±\sqrt{12}}{2}
Tāpiri 4 ki te 8.
x=\frac{-2±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{2\sqrt{3}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{3}.
x=\sqrt{3}-1
Whakawehe -2+2\sqrt{3} ki te 2.
x=\frac{-2\sqrt{3}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i -2.
x=-\sqrt{3}-1
Whakawehe -2-2\sqrt{3} ki te 2.
x=\sqrt{3}-1 x=-\sqrt{3}-1
Kua oti te whārite te whakatau.
x-2+\left(x+2\right)x=x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
3x-2+x^{2}=x
Pahekotia te x me 2x, ka 3x.
3x-2+x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
2x-2+x^{2}=0
Pahekotia te 3x me -x, ka 2x.
2x+x^{2}=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+2x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x+1^{2}=2+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=2+1
Pūrua 1.
x^{2}+2x+1=3
Tāpiri 2 ki te 1.
\left(x+1\right)^{2}=3
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{3} x+1=-\sqrt{3}
Whakarūnātia.
x=\sqrt{3}-1 x=-\sqrt{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x-2+\left(x+2\right)x=x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
3x-2+x^{2}=x
Pahekotia te x me 2x, ka 3x.
3x-2+x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
2x-2+x^{2}=0
Pahekotia te 3x me -x, ka 2x.
x^{2}+2x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-2\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-2±\sqrt{12}}{2}
Tāpiri 4 ki te 8.
x=\frac{-2±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{2\sqrt{3}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{3}.
x=\sqrt{3}-1
Whakawehe -2+2\sqrt{3} ki te 2.
x=\frac{-2\sqrt{3}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i -2.
x=-\sqrt{3}-1
Whakawehe -2-2\sqrt{3} ki te 2.
x=\sqrt{3}-1 x=-\sqrt{3}-1
Kua oti te whārite te whakatau.
x-2+\left(x+2\right)x=x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
3x-2+x^{2}=x
Pahekotia te x me 2x, ka 3x.
3x-2+x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
2x-2+x^{2}=0
Pahekotia te 3x me -x, ka 2x.
2x+x^{2}=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+2x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x+1^{2}=2+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=2+1
Pūrua 1.
x^{2}+2x+1=3
Tāpiri 2 ki te 1.
\left(x+1\right)^{2}=3
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{3} x+1=-\sqrt{3}
Whakarūnātia.
x=\sqrt{3}-1 x=-\sqrt{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.