Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2+x+3=7x-\left(x-2\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,\left(x-2\right)\left(x+1\right).
2x-2+3=7x-\left(x-2\right)x
Pahekotia te x me x, ka 2x.
2x+1=7x-\left(x-2\right)x
Tāpirihia te -2 ki te 3, ka 1.
2x+1=7x-\left(x^{2}-2x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
2x+1=7x-x^{2}+2x
Hei kimi i te tauaro o x^{2}-2x, kimihia te tauaro o ia taurangi.
2x+1=9x-x^{2}
Pahekotia te 7x me 2x, ka 9x.
2x+1-9x=-x^{2}
Tangohia te 9x mai i ngā taha e rua.
-7x+1=-x^{2}
Pahekotia te 2x me -9x, ka -7x.
-7x+1+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}-7x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -7 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4}}{2}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{45}}{2}
Tāpiri 49 ki te -4.
x=\frac{-\left(-7\right)±3\sqrt{5}}{2}
Tuhia te pūtakerua o te 45.
x=\frac{7±3\sqrt{5}}{2}
Ko te tauaro o -7 ko 7.
x=\frac{3\sqrt{5}+7}{2}
Nā, me whakaoti te whārite x=\frac{7±3\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 7 ki te 3\sqrt{5}.
x=\frac{7-3\sqrt{5}}{2}
Nā, me whakaoti te whārite x=\frac{7±3\sqrt{5}}{2} ina he tango te ±. Tango 3\sqrt{5} mai i 7.
x=\frac{3\sqrt{5}+7}{2} x=\frac{7-3\sqrt{5}}{2}
Kua oti te whārite te whakatau.
x-2+x+3=7x-\left(x-2\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,\left(x-2\right)\left(x+1\right).
2x-2+3=7x-\left(x-2\right)x
Pahekotia te x me x, ka 2x.
2x+1=7x-\left(x-2\right)x
Tāpirihia te -2 ki te 3, ka 1.
2x+1=7x-\left(x^{2}-2x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
2x+1=7x-x^{2}+2x
Hei kimi i te tauaro o x^{2}-2x, kimihia te tauaro o ia taurangi.
2x+1=9x-x^{2}
Pahekotia te 7x me 2x, ka 9x.
2x+1-9x=-x^{2}
Tangohia te 9x mai i ngā taha e rua.
-7x+1=-x^{2}
Pahekotia te 2x me -9x, ka -7x.
-7x+1+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
-7x+x^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-7x=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-1+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=-1+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{45}{4}
Tāpiri -1 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{45}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{3\sqrt{5}}{2} x-\frac{7}{2}=-\frac{3\sqrt{5}}{2}
Whakarūnātia.
x=\frac{3\sqrt{5}+7}{2} x=\frac{7-3\sqrt{5}}{2}
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.