Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-1+\left(x+1\right)\times 2=x^{2}+2x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1,x^{2}-1.
x-1+2x+2=x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 2.
3x-1+2=x^{2}+2x
Pahekotia te x me 2x, ka 3x.
3x+1=x^{2}+2x
Tāpirihia te -1 ki te 2, ka 1.
3x+1-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
3x+1-x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
x+1-x^{2}=0
Pahekotia te 3x me -2x, ka x.
-x^{2}+x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Tāpiri 1 ki te 4.
x=\frac{-1±\sqrt{5}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{5}-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{5}}{-2} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Whakawehe -1+\sqrt{5} ki te -2.
x=\frac{-\sqrt{5}-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{5}}{-2} ina he tango te ±. Tango \sqrt{5} mai i -1.
x=\frac{\sqrt{5}+1}{2}
Whakawehe -1-\sqrt{5} ki te -2.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
Kua oti te whārite te whakatau.
x-1+\left(x+1\right)\times 2=x^{2}+2x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1,x^{2}-1.
x-1+2x+2=x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 2.
3x-1+2=x^{2}+2x
Pahekotia te x me 2x, ka 3x.
3x+1=x^{2}+2x
Tāpirihia te -1 ki te 2, ka 1.
3x+1-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
3x+1-x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
x+1-x^{2}=0
Pahekotia te 3x me -2x, ka x.
x-x^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}+x=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-x=-\frac{1}{-1}
Whakawehe 1 ki te -1.
x^{2}-x=1
Whakawehe -1 ki te -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
Tāpiri 1 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Whakarūnātia.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.