Whakaoti mō x
x=\frac{\sqrt{745}-15}{26}\approx 0.47287262
x=\frac{-\sqrt{745}-15}{26}\approx -1.626718774
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x+24+12x+12=13\left(x+1\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x+2,12.
24x+24+12=13\left(x+1\right)\left(x+2\right)
Pahekotia te 12x me 12x, ka 24x.
24x+36=13\left(x+1\right)\left(x+2\right)
Tāpirihia te 24 ki te 12, ka 36.
24x+36=\left(13x+13\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 13 ki te x+1.
24x+36=13x^{2}+39x+26
Whakamahia te āhuatanga tuaritanga hei whakarea te 13x+13 ki te x+2 ka whakakotahi i ngā kupu rite.
24x+36-13x^{2}=39x+26
Tangohia te 13x^{2} mai i ngā taha e rua.
24x+36-13x^{2}-39x=26
Tangohia te 39x mai i ngā taha e rua.
-15x+36-13x^{2}=26
Pahekotia te 24x me -39x, ka -15x.
-15x+36-13x^{2}-26=0
Tangohia te 26 mai i ngā taha e rua.
-15x+10-13x^{2}=0
Tangohia te 26 i te 36, ka 10.
-13x^{2}-15x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-13\right)\times 10}}{2\left(-13\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -13 mō a, -15 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-13\right)\times 10}}{2\left(-13\right)}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225+52\times 10}}{2\left(-13\right)}
Whakareatia -4 ki te -13.
x=\frac{-\left(-15\right)±\sqrt{225+520}}{2\left(-13\right)}
Whakareatia 52 ki te 10.
x=\frac{-\left(-15\right)±\sqrt{745}}{2\left(-13\right)}
Tāpiri 225 ki te 520.
x=\frac{15±\sqrt{745}}{2\left(-13\right)}
Ko te tauaro o -15 ko 15.
x=\frac{15±\sqrt{745}}{-26}
Whakareatia 2 ki te -13.
x=\frac{\sqrt{745}+15}{-26}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{745}}{-26} ina he tāpiri te ±. Tāpiri 15 ki te \sqrt{745}.
x=\frac{-\sqrt{745}-15}{26}
Whakawehe 15+\sqrt{745} ki te -26.
x=\frac{15-\sqrt{745}}{-26}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{745}}{-26} ina he tango te ±. Tango \sqrt{745} mai i 15.
x=\frac{\sqrt{745}-15}{26}
Whakawehe 15-\sqrt{745} ki te -26.
x=\frac{-\sqrt{745}-15}{26} x=\frac{\sqrt{745}-15}{26}
Kua oti te whārite te whakatau.
12x+24+12x+12=13\left(x+1\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x+2,12.
24x+24+12=13\left(x+1\right)\left(x+2\right)
Pahekotia te 12x me 12x, ka 24x.
24x+36=13\left(x+1\right)\left(x+2\right)
Tāpirihia te 24 ki te 12, ka 36.
24x+36=\left(13x+13\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 13 ki te x+1.
24x+36=13x^{2}+39x+26
Whakamahia te āhuatanga tuaritanga hei whakarea te 13x+13 ki te x+2 ka whakakotahi i ngā kupu rite.
24x+36-13x^{2}=39x+26
Tangohia te 13x^{2} mai i ngā taha e rua.
24x+36-13x^{2}-39x=26
Tangohia te 39x mai i ngā taha e rua.
-15x+36-13x^{2}=26
Pahekotia te 24x me -39x, ka -15x.
-15x-13x^{2}=26-36
Tangohia te 36 mai i ngā taha e rua.
-15x-13x^{2}=-10
Tangohia te 36 i te 26, ka -10.
-13x^{2}-15x=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-13x^{2}-15x}{-13}=-\frac{10}{-13}
Whakawehea ngā taha e rua ki te -13.
x^{2}+\left(-\frac{15}{-13}\right)x=-\frac{10}{-13}
Mā te whakawehe ki te -13 ka wetekia te whakareanga ki te -13.
x^{2}+\frac{15}{13}x=-\frac{10}{-13}
Whakawehe -15 ki te -13.
x^{2}+\frac{15}{13}x=\frac{10}{13}
Whakawehe -10 ki te -13.
x^{2}+\frac{15}{13}x+\left(\frac{15}{26}\right)^{2}=\frac{10}{13}+\left(\frac{15}{26}\right)^{2}
Whakawehea te \frac{15}{13}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{26}. Nā, tāpiria te pūrua o te \frac{15}{26} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{15}{13}x+\frac{225}{676}=\frac{10}{13}+\frac{225}{676}
Pūruatia \frac{15}{26} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{15}{13}x+\frac{225}{676}=\frac{745}{676}
Tāpiri \frac{10}{13} ki te \frac{225}{676} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{15}{26}\right)^{2}=\frac{745}{676}
Tauwehea x^{2}+\frac{15}{13}x+\frac{225}{676}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{26}\right)^{2}}=\sqrt{\frac{745}{676}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{26}=\frac{\sqrt{745}}{26} x+\frac{15}{26}=-\frac{\sqrt{745}}{26}
Whakarūnātia.
x=\frac{\sqrt{745}-15}{26} x=\frac{-\sqrt{745}-15}{26}
Me tango \frac{15}{26} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}