Whakaoti mō w
w=-7
w=5
Tohaina
Kua tāruatia ki te papatopenga
35=w\left(w+2\right)
Tē taea kia ōrite te tāupe w ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 35w, arā, te tauraro pātahi he tino iti rawa te kitea o w,35.
35=w^{2}+2w
Whakamahia te āhuatanga tohatoha hei whakarea te w ki te w+2.
w^{2}+2w=35
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
w^{2}+2w-35=0
Tangohia te 35 mai i ngā taha e rua.
w=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
Pūrua 2.
w=\frac{-2±\sqrt{4+140}}{2}
Whakareatia -4 ki te -35.
w=\frac{-2±\sqrt{144}}{2}
Tāpiri 4 ki te 140.
w=\frac{-2±12}{2}
Tuhia te pūtakerua o te 144.
w=\frac{10}{2}
Nā, me whakaoti te whārite w=\frac{-2±12}{2} ina he tāpiri te ±. Tāpiri -2 ki te 12.
w=5
Whakawehe 10 ki te 2.
w=-\frac{14}{2}
Nā, me whakaoti te whārite w=\frac{-2±12}{2} ina he tango te ±. Tango 12 mai i -2.
w=-7
Whakawehe -14 ki te 2.
w=5 w=-7
Kua oti te whārite te whakatau.
35=w\left(w+2\right)
Tē taea kia ōrite te tāupe w ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 35w, arā, te tauraro pātahi he tino iti rawa te kitea o w,35.
35=w^{2}+2w
Whakamahia te āhuatanga tohatoha hei whakarea te w ki te w+2.
w^{2}+2w=35
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
w^{2}+2w+1^{2}=35+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+2w+1=35+1
Pūrua 1.
w^{2}+2w+1=36
Tāpiri 35 ki te 1.
\left(w+1\right)^{2}=36
Tauwehea w^{2}+2w+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+1\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+1=6 w+1=-6
Whakarūnātia.
w=5 w=-7
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}