Whakaoti mō t
t=\frac{\sqrt{2}}{2}+1\approx 1.707106781
t=-\frac{\sqrt{2}}{2}+1\approx 0.292893219
Tohaina
Kua tāruatia ki te papatopenga
t-1+t=2t\left(t-1\right)
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara 0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te t\left(t-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o t,t-1.
2t-1=2t\left(t-1\right)
Pahekotia te t me t, ka 2t.
2t-1=2t^{2}-2t
Whakamahia te āhuatanga tohatoha hei whakarea te 2t ki te t-1.
2t-1-2t^{2}=-2t
Tangohia te 2t^{2} mai i ngā taha e rua.
2t-1-2t^{2}+2t=0
Me tāpiri te 2t ki ngā taha e rua.
4t-1-2t^{2}=0
Pahekotia te 2t me 2t, ka 4t.
-2t^{2}+4t-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Pūrua 4.
t=\frac{-4±\sqrt{16+8\left(-1\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
t=\frac{-4±\sqrt{16-8}}{2\left(-2\right)}
Whakareatia 8 ki te -1.
t=\frac{-4±\sqrt{8}}{2\left(-2\right)}
Tāpiri 16 ki te -8.
t=\frac{-4±2\sqrt{2}}{2\left(-2\right)}
Tuhia te pūtakerua o te 8.
t=\frac{-4±2\sqrt{2}}{-4}
Whakareatia 2 ki te -2.
t=\frac{2\sqrt{2}-4}{-4}
Nā, me whakaoti te whārite t=\frac{-4±2\sqrt{2}}{-4} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{2}.
t=-\frac{\sqrt{2}}{2}+1
Whakawehe -4+2\sqrt{2} ki te -4.
t=\frac{-2\sqrt{2}-4}{-4}
Nā, me whakaoti te whārite t=\frac{-4±2\sqrt{2}}{-4} ina he tango te ±. Tango 2\sqrt{2} mai i -4.
t=\frac{\sqrt{2}}{2}+1
Whakawehe -4-2\sqrt{2} ki te -4.
t=-\frac{\sqrt{2}}{2}+1 t=\frac{\sqrt{2}}{2}+1
Kua oti te whārite te whakatau.
t-1+t=2t\left(t-1\right)
Tē taea kia ōrite te tāupe t ki tētahi o ngā uara 0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te t\left(t-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o t,t-1.
2t-1=2t\left(t-1\right)
Pahekotia te t me t, ka 2t.
2t-1=2t^{2}-2t
Whakamahia te āhuatanga tohatoha hei whakarea te 2t ki te t-1.
2t-1-2t^{2}=-2t
Tangohia te 2t^{2} mai i ngā taha e rua.
2t-1-2t^{2}+2t=0
Me tāpiri te 2t ki ngā taha e rua.
4t-1-2t^{2}=0
Pahekotia te 2t me 2t, ka 4t.
4t-2t^{2}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-2t^{2}+4t=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2t^{2}+4t}{-2}=\frac{1}{-2}
Whakawehea ngā taha e rua ki te -2.
t^{2}+\frac{4}{-2}t=\frac{1}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
t^{2}-2t=\frac{1}{-2}
Whakawehe 4 ki te -2.
t^{2}-2t=-\frac{1}{2}
Whakawehe 1 ki te -2.
t^{2}-2t+1=-\frac{1}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-2t+1=\frac{1}{2}
Tāpiri -\frac{1}{2} ki te 1.
\left(t-1\right)^{2}=\frac{1}{2}
Tauwehea t^{2}-2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-1=\frac{\sqrt{2}}{2} t-1=-\frac{\sqrt{2}}{2}
Whakarūnātia.
t=\frac{\sqrt{2}}{2}+1 t=-\frac{\sqrt{2}}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}