Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+1 ko n\left(n+1\right). Whakareatia \frac{1}{n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{n+1} ki te \frac{n}{n}.
\frac{n+1-n}{n\left(n+1\right)}
Tā te mea he rite te tauraro o \frac{n+1}{n\left(n+1\right)} me \frac{n}{n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{n\left(n+1\right)}
Whakakotahitia ngā kupu rite i n+1-n.
\frac{1}{n^{2}+n}
Whakarohaina te n\left(n+1\right).
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+1 ko n\left(n+1\right). Whakareatia \frac{1}{n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{n+1} ki te \frac{n}{n}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1-n}{n\left(n+1\right)})
Tā te mea he rite te tauraro o \frac{n+1}{n\left(n+1\right)} me \frac{n}{n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n\left(n+1\right)})
Whakakotahitia ngā kupu rite i n+1-n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n^{2}+n})
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n+1.
-\left(n^{2}+n^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(n^{2}+n^{1}\right)^{-2}\left(2n^{2-1}+n^{1-1}\right)
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(n^{2}+n^{1}\right)^{-2}\left(-2n^{1}-n^{0}\right)
Whakarūnātia.
\left(n^{2}+n\right)^{-2}\left(-2n-n^{0}\right)
Mō tētahi kupu t, t^{1}=t.
\left(n^{2}+n\right)^{-2}\left(-2n-1\right)
Mō tētahi kupu t mahue te 0, t^{0}=1.