Aromātai
\frac{1}{n\left(n+1\right)}
Kimi Pārōnaki e ai ki n
-\frac{2n+1}{\left(n\left(n+1\right)\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+1 ko n\left(n+1\right). Whakareatia \frac{1}{n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{n+1} ki te \frac{n}{n}.
\frac{n+1-n}{n\left(n+1\right)}
Tā te mea he rite te tauraro o \frac{n+1}{n\left(n+1\right)} me \frac{n}{n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{n\left(n+1\right)}
Whakakotahitia ngā kupu rite i n+1-n.
\frac{1}{n^{2}+n}
Whakarohaina te n\left(n+1\right).
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+1 ko n\left(n+1\right). Whakareatia \frac{1}{n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{n+1} ki te \frac{n}{n}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1-n}{n\left(n+1\right)})
Tā te mea he rite te tauraro o \frac{n+1}{n\left(n+1\right)} me \frac{n}{n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n\left(n+1\right)})
Whakakotahitia ngā kupu rite i n+1-n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n^{2}+n})
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n+1.
-\left(n^{2}+n^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(n^{2}+n^{1}\right)^{-2}\left(2n^{2-1}+n^{1-1}\right)
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(n^{2}+n^{1}\right)^{-2}\left(-2n^{1}-n^{0}\right)
Whakarūnātia.
\left(n^{2}+n\right)^{-2}\left(-2n-n^{0}\right)
Mō tētahi kupu t, t^{1}=t.
\left(n^{2}+n\right)^{-2}\left(-2n-1\right)
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}