Whakaoti mō m
m=\frac{5np}{4n+p}
n\neq 0\text{ and }p\neq 0\text{ and }n\neq -\frac{p}{4}
Whakaoti mō n
n=-\frac{mp}{4m-5p}
p\neq 0\text{ and }m\neq 0\text{ and }p\neq \frac{4m}{5}
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { n } + \frac { 4 } { p } = \frac { 5 } { m }
Tohaina
Kua tāruatia ki te papatopenga
mp+mn\times 4=np\times 5
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te mnp, arā, te tauraro pātahi he tino iti rawa te kitea o n,p,m.
4mn+mp=5np
Whakaraupapatia anō ngā kīanga tau.
\left(4n+p\right)m=5np
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\frac{\left(4n+p\right)m}{4n+p}=\frac{5np}{4n+p}
Whakawehea ngā taha e rua ki te p+4n.
m=\frac{5np}{4n+p}
Mā te whakawehe ki te p+4n ka wetekia te whakareanga ki te p+4n.
m=\frac{5np}{4n+p}\text{, }m\neq 0
Tē taea kia ōrite te tāupe m ki 0.
mp+mn\times 4=np\times 5
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te mnp, arā, te tauraro pātahi he tino iti rawa te kitea o n,p,m.
mp+mn\times 4-np\times 5=0
Tangohia te np\times 5 mai i ngā taha e rua.
mp+mn\times 4-5np=0
Whakareatia te -1 ki te 5, ka -5.
mn\times 4-5np=-mp
Tangohia te mp mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(m\times 4-5p\right)n=-mp
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(4m-5p\right)n=-mp
He hanga arowhānui tō te whārite.
\frac{\left(4m-5p\right)n}{4m-5p}=-\frac{mp}{4m-5p}
Whakawehea ngā taha e rua ki te 4m-5p.
n=-\frac{mp}{4m-5p}
Mā te whakawehe ki te 4m-5p ka wetekia te whakareanga ki te 4m-5p.
n=-\frac{mp}{4m-5p}\text{, }n\neq 0
Tē taea kia ōrite te tāupe n ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}