Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{m-n}-\frac{3m-3n}{\left(m+n\right)\times 2}
Whakawehe \frac{1}{m+n} ki te \frac{2}{3m-3n} mā te whakarea \frac{1}{m+n} ki te tau huripoki o \frac{2}{3m-3n}.
\frac{2\left(m+n\right)}{2\left(m+n\right)\left(m-n\right)}-\frac{\left(3m-3n\right)\left(m-n\right)}{2\left(m+n\right)\left(m-n\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m-n me \left(m+n\right)\times 2 ko 2\left(m+n\right)\left(m-n\right). Whakareatia \frac{1}{m-n} ki te \frac{2\left(m+n\right)}{2\left(m+n\right)}. Whakareatia \frac{3m-3n}{\left(m+n\right)\times 2} ki te \frac{m-n}{m-n}.
\frac{2\left(m+n\right)-\left(3m-3n\right)\left(m-n\right)}{2\left(m+n\right)\left(m-n\right)}
Tā te mea he rite te tauraro o \frac{2\left(m+n\right)}{2\left(m+n\right)\left(m-n\right)} me \frac{\left(3m-3n\right)\left(m-n\right)}{2\left(m+n\right)\left(m-n\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2m+2n-3m^{2}+3mn+3nm-3n^{2}}{2\left(m+n\right)\left(m-n\right)}
Mahia ngā whakarea i roto o 2\left(m+n\right)-\left(3m-3n\right)\left(m-n\right).
\frac{2m+2n-3m^{2}-3n^{2}+6mn}{2\left(m+n\right)\left(m-n\right)}
Whakakotahitia ngā kupu rite i 2m+2n-3m^{2}+3mn+3nm-3n^{2}.
\frac{2m+2n-3m^{2}-3n^{2}+6mn}{2m^{2}-2n^{2}}
Whakarohaina te 2\left(m+n\right)\left(m-n\right).