Aromātai
\frac{3}{k-r}
Kimi Pārōnaki e ai ki k
-\frac{3}{\left(k-r\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{k-r}+\frac{4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Tauwehea te k^{2}-r^{2}.
\frac{r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o k-r me \left(r+k\right)\left(-r+k\right) ko \left(r+k\right)\left(-r+k\right). Whakareatia \frac{1}{k-r} ki te \frac{r+k}{r+k}.
\frac{r+k+4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Tā te mea he rite te tauraro o \frac{r+k}{\left(r+k\right)\left(-r+k\right)} me \frac{4r}{\left(r+k\right)\left(-r+k\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Whakakotahitia ngā kupu rite i r+k+4r.
\frac{5r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(r+k\right)\left(-r+k\right) me k+r ko \left(r+k\right)\left(-r+k\right). Whakareatia \frac{2}{k+r} ki te \frac{-r+k}{-r+k}.
\frac{5r+k+2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Tā te mea he rite te tauraro o \frac{5r+k}{\left(r+k\right)\left(-r+k\right)} me \frac{2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5r+k-2r+2k}{\left(r+k\right)\left(-r+k\right)}
Mahia ngā whakarea i roto o 5r+k+2\left(-r+k\right).
\frac{3r+3k}{\left(r+k\right)\left(-r+k\right)}
Whakakotahitia ngā kupu rite i 5r+k-2r+2k.
\frac{3\left(r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3r+3k}{\left(r+k\right)\left(-r+k\right)}.
\frac{3}{-r+k}
Me whakakore tahi te r+k i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}