Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{k-r}+\frac{4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Tauwehea te k^{2}-r^{2}.
\frac{r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o k-r me \left(r+k\right)\left(-r+k\right) ko \left(r+k\right)\left(-r+k\right). Whakareatia \frac{1}{k-r} ki te \frac{r+k}{r+k}.
\frac{r+k+4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Tā te mea he rite te tauraro o \frac{r+k}{\left(r+k\right)\left(-r+k\right)} me \frac{4r}{\left(r+k\right)\left(-r+k\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Whakakotahitia ngā kupu rite i r+k+4r.
\frac{5r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(r+k\right)\left(-r+k\right) me k+r ko \left(r+k\right)\left(-r+k\right). Whakareatia \frac{2}{k+r} ki te \frac{-r+k}{-r+k}.
\frac{5r+k+2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Tā te mea he rite te tauraro o \frac{5r+k}{\left(r+k\right)\left(-r+k\right)} me \frac{2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5r+k-2r+2k}{\left(r+k\right)\left(-r+k\right)}
Mahia ngā whakarea i roto o 5r+k+2\left(-r+k\right).
\frac{3r+3k}{\left(r+k\right)\left(-r+k\right)}
Whakakotahitia ngā kupu rite i 5r+k-2r+2k.
\frac{3\left(r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3r+3k}{\left(r+k\right)\left(-r+k\right)}.
\frac{3}{-r+k}
Me whakakore tahi te r+k i te taurunga me te tauraro.