Whakaoti mō h
h=-\frac{1}{2\left(x-4\right)}
x\neq 4
Whakaoti mō x
x=4-\frac{1}{2h}
h\neq 0
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { h ( - 4 ) } = \frac { 1 } { 2 } x - 2
Tohaina
Kua tāruatia ki te papatopenga
-1=\frac{1}{2}x\times 4h+4h\left(-2\right)
Tē taea kia ōrite te tāupe h ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4h, arā, te tauraro pātahi he tino iti rawa te kitea o h\left(-4\right),2.
-1=2xh+4h\left(-2\right)
Whakareatia te \frac{1}{2} ki te 4, ka 2.
-1=2xh-8h
Whakareatia te 4 ki te -2, ka -8.
2xh-8h=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(2x-8\right)h=-1
Pahekotia ngā kīanga tau katoa e whai ana i te h.
\frac{\left(2x-8\right)h}{2x-8}=-\frac{1}{2x-8}
Whakawehea ngā taha e rua ki te 2x-8.
h=-\frac{1}{2x-8}
Mā te whakawehe ki te 2x-8 ka wetekia te whakareanga ki te 2x-8.
h=-\frac{1}{2\left(x-4\right)}
Whakawehe -1 ki te 2x-8.
h=-\frac{1}{2\left(x-4\right)}\text{, }h\neq 0
Tē taea kia ōrite te tāupe h ki 0.
-1=\frac{1}{2}x\times 4h+4h\left(-2\right)
Me whakarea ngā taha e rua o te whārite ki te 4h, arā, te tauraro pātahi he tino iti rawa te kitea o h\left(-4\right),2.
-1=2xh+4h\left(-2\right)
Whakareatia te \frac{1}{2} ki te 4, ka 2.
-1=2xh-8h
Whakareatia te 4 ki te -2, ka -8.
2xh-8h=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2xh=-1+8h
Me tāpiri te 8h ki ngā taha e rua.
2hx=8h-1
He hanga arowhānui tō te whārite.
\frac{2hx}{2h}=\frac{8h-1}{2h}
Whakawehea ngā taha e rua ki te 2h.
x=\frac{8h-1}{2h}
Mā te whakawehe ki te 2h ka wetekia te whakareanga ki te 2h.
x=4-\frac{1}{2h}
Whakawehe -1+8h ki te 2h.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}