Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2}
Tauwehea te a^{2}-2a.
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-1 me a\left(a-2\right) ko a\left(a-2\right)\left(a-1\right). Whakareatia \frac{1}{a-1} ki te \frac{a\left(a-2\right)}{a\left(a-2\right)}. Whakareatia \frac{2}{a\left(a-2\right)} ki te \frac{a-1}{a-1}.
\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Tā te mea he rite te tauraro o \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} me \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Mahia ngā whakarea i roto o a\left(a-2\right)-2\left(a-1\right).
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Whakakotahitia ngā kupu rite i a^{2}-2a-2a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)}
Tauwehea te a^{2}-3a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-2\right)\left(a-1\right) me \left(a-2\right)\left(a-1\right) ko a\left(a-2\right)\left(a-1\right). Whakareatia \frac{1}{\left(a-2\right)\left(a-1\right)} ki te \frac{a}{a}.
\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)}
Tā te mea he rite te tauraro o \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} me \frac{a}{a\left(a-2\right)\left(a-1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}
Whakakotahitia ngā kupu rite i a^{2}-4a+2+a.
\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}.
\frac{1}{a}
Me whakakore tahi te \left(a-2\right)\left(a-1\right) i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2})
Tauwehea te a^{2}-2a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-1 me a\left(a-2\right) ko a\left(a-2\right)\left(a-1\right). Whakareatia \frac{1}{a-1} ki te \frac{a\left(a-2\right)}{a\left(a-2\right)}. Whakareatia \frac{2}{a\left(a-2\right)} ki te \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Tā te mea he rite te tauraro o \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} me \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Mahia ngā whakarea i roto o a\left(a-2\right)-2\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Whakakotahitia ngā kupu rite i a^{2}-2a-2a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)})
Tauwehea te a^{2}-3a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-2\right)\left(a-1\right) me \left(a-2\right)\left(a-1\right) ko a\left(a-2\right)\left(a-1\right). Whakareatia \frac{1}{\left(a-2\right)\left(a-1\right)} ki te \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)})
Tā te mea he rite te tauraro o \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} me \frac{a}{a\left(a-2\right)\left(a-1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)})
Whakakotahitia ngā kupu rite i a^{2}-4a+2+a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})
Me whakakore tahi te \left(a-2\right)\left(a-1\right) i te taurunga me te tauraro.
-a^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-a^{-2}
Tango 1 mai i -1.