Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(a-1\right)\left(a+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Hei kimi i te tauaro o 2ax+a+2x+1, kimihia te tauaro o ia taurangi.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Tangohia te 1 i te 1, ka 0.
-2ax-a-2x=2ax-a-2x+1+a
Whakamahia te āhuatanga tohatoha hei whakarea te a-1 ki te 2x-1.
-2ax-a-2x=2ax-2x+1
Pahekotia te -a me a, ka 0.
-2ax-a-2x-2ax=-2x+1
Tangohia te 2ax mai i ngā taha e rua.
-4ax-a-2x=-2x+1
Pahekotia te -2ax me -2ax, ka -4ax.
-4ax-a=-2x+1+2x
Me tāpiri te 2x ki ngā taha e rua.
-4ax-a=1
Pahekotia te -2x me 2x, ka 0.
\left(-4x-1\right)a=1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(-4x-1\right)a}{-4x-1}=\frac{1}{-4x-1}
Whakawehea ngā taha e rua ki te -4x-1.
a=\frac{1}{-4x-1}
Mā te whakawehe ki te -4x-1 ka wetekia te whakareanga ki te -4x-1.
a=\frac{1}{-4x-1}\text{, }a\neq -1\text{ and }a\neq 1
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,1.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Me whakarea ngā taha e rua o te whārite ki te \left(a-1\right)\left(a+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Hei kimi i te tauaro o 2ax+a+2x+1, kimihia te tauaro o ia taurangi.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Tangohia te 1 i te 1, ka 0.
-2ax-a-2x=2ax-a-2x+1+a
Whakamahia te āhuatanga tohatoha hei whakarea te a-1 ki te 2x-1.
-2ax-a-2x=2ax-2x+1
Pahekotia te -a me a, ka 0.
-2ax-a-2x-2ax=-2x+1
Tangohia te 2ax mai i ngā taha e rua.
-4ax-a-2x=-2x+1
Pahekotia te -2ax me -2ax, ka -4ax.
-4ax-a-2x+2x=1
Me tāpiri te 2x ki ngā taha e rua.
-4ax-a=1
Pahekotia te -2x me 2x, ka 0.
-4ax=1+a
Me tāpiri te a ki ngā taha e rua.
\left(-4a\right)x=a+1
He hanga arowhānui tō te whārite.
\frac{\left(-4a\right)x}{-4a}=\frac{a+1}{-4a}
Whakawehea ngā taha e rua ki te -4a.
x=\frac{a+1}{-4a}
Mā te whakawehe ki te -4a ka wetekia te whakareanga ki te -4a.
x=-\frac{1}{4}-\frac{1}{4a}
Whakawehe a+1 ki te -4a.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(a-1\right)\left(a+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Hei kimi i te tauaro o 2ax+a+2x+1, kimihia te tauaro o ia taurangi.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Tangohia te 1 i te 1, ka 0.
-2ax-a-2x=2ax-a-2x+1+a
Whakamahia te āhuatanga tohatoha hei whakarea te a-1 ki te 2x-1.
-2ax-a-2x=2ax-2x+1
Pahekotia te -a me a, ka 0.
-2ax-a-2x-2ax=-2x+1
Tangohia te 2ax mai i ngā taha e rua.
-4ax-a-2x=-2x+1
Pahekotia te -2ax me -2ax, ka -4ax.
-4ax-a=-2x+1+2x
Me tāpiri te 2x ki ngā taha e rua.
-4ax-a=1
Pahekotia te -2x me 2x, ka 0.
\left(-4x-1\right)a=1
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(-4x-1\right)a}{-4x-1}=\frac{1}{-4x-1}
Whakawehea ngā taha e rua ki te -4x-1.
a=\frac{1}{-4x-1}
Mā te whakawehe ki te -4x-1 ka wetekia te whakareanga ki te -4x-1.
a=\frac{1}{-4x-1}\text{, }a\neq -1\text{ and }a\neq 1
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,1.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Me whakarea ngā taha e rua o te whārite ki te \left(a-1\right)\left(a+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o a^{2}-1,a-1,a+1.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te 2x+1.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
Hei kimi i te tauaro o 2ax+a+2x+1, kimihia te tauaro o ia taurangi.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
Tangohia te 1 i te 1, ka 0.
-2ax-a-2x=2ax-a-2x+1+a
Whakamahia te āhuatanga tohatoha hei whakarea te a-1 ki te 2x-1.
-2ax-a-2x=2ax-2x+1
Pahekotia te -a me a, ka 0.
-2ax-a-2x-2ax=-2x+1
Tangohia te 2ax mai i ngā taha e rua.
-4ax-a-2x=-2x+1
Pahekotia te -2ax me -2ax, ka -4ax.
-4ax-a-2x+2x=1
Me tāpiri te 2x ki ngā taha e rua.
-4ax-a=1
Pahekotia te -2x me 2x, ka 0.
-4ax=1+a
Me tāpiri te a ki ngā taha e rua.
\left(-4a\right)x=a+1
He hanga arowhānui tō te whārite.
\frac{\left(-4a\right)x}{-4a}=\frac{a+1}{-4a}
Whakawehea ngā taha e rua ki te -4a.
x=\frac{a+1}{-4a}
Mā te whakawehe ki te -4a ka wetekia te whakareanga ki te -4a.
x=-\frac{1}{4}-\frac{1}{4a}
Whakawehe a+1 ki te -4a.