Whakaoti mō R
R=\frac{R_{1}R_{2}}{R_{1}+R_{2}}
R_{2}\neq 0\text{ and }R_{1}\neq 0\text{ and }R_{1}\neq -R_{2}
Whakaoti mō R_1
R_{1}=-\frac{RR_{2}}{R-R_{2}}
R_{2}\neq 0\text{ and }R\neq 0\text{ and }R\neq R_{2}
Tohaina
Kua tāruatia ki te papatopenga
R_{1}R_{2}=RR_{2}+RR_{1}
Tē taea kia ōrite te tāupe R ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te RR_{1}R_{2}, arā, te tauraro pātahi he tino iti rawa te kitea o R,R_{1},R_{2}.
RR_{2}+RR_{1}=R_{1}R_{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(R_{2}+R_{1}\right)R=R_{1}R_{2}
Pahekotia ngā kīanga tau katoa e whai ana i te R.
\left(R_{1}+R_{2}\right)R=R_{1}R_{2}
He hanga arowhānui tō te whārite.
\frac{\left(R_{1}+R_{2}\right)R}{R_{1}+R_{2}}=\frac{R_{1}R_{2}}{R_{1}+R_{2}}
Whakawehea ngā taha e rua ki te R_{1}+R_{2}.
R=\frac{R_{1}R_{2}}{R_{1}+R_{2}}
Mā te whakawehe ki te R_{1}+R_{2} ka wetekia te whakareanga ki te R_{1}+R_{2}.
R=\frac{R_{1}R_{2}}{R_{1}+R_{2}}\text{, }R\neq 0
Tē taea kia ōrite te tāupe R ki 0.
R_{1}R_{2}=RR_{2}+RR_{1}
Tē taea kia ōrite te tāupe R_{1} ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te RR_{1}R_{2}, arā, te tauraro pātahi he tino iti rawa te kitea o R,R_{1},R_{2}.
R_{1}R_{2}-RR_{1}=RR_{2}
Tangohia te RR_{1} mai i ngā taha e rua.
\left(R_{2}-R\right)R_{1}=RR_{2}
Pahekotia ngā kīanga tau katoa e whai ana i te R_{1}.
\frac{\left(R_{2}-R\right)R_{1}}{R_{2}-R}=\frac{RR_{2}}{R_{2}-R}
Whakawehea ngā taha e rua ki te R_{2}-R.
R_{1}=\frac{RR_{2}}{R_{2}-R}
Mā te whakawehe ki te R_{2}-R ka wetekia te whakareanga ki te R_{2}-R.
R_{1}=\frac{RR_{2}}{R_{2}-R}\text{, }R_{1}\neq 0
Tē taea kia ōrite te tāupe R_{1} ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}