Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5\left(x+2\right)\left(3x-1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 9x^{2}-6x+1,15x^{2}+25x-10,3x-1.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 16.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
Pahekotia te 5x me 48x, ka 53x.
53x-6=5\left(x+2\right)\left(3x-1\right)
Tangohia te 16 i te 10, ka -6.
53x-6=\left(5x+10\right)\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
53x-6=15x^{2}+25x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x+10 ki te 3x-1 ka whakakotahi i ngā kupu rite.
53x-6-15x^{2}=25x-10
Tangohia te 15x^{2} mai i ngā taha e rua.
53x-6-15x^{2}-25x=-10
Tangohia te 25x mai i ngā taha e rua.
28x-6-15x^{2}=-10
Pahekotia te 53x me -25x, ka 28x.
28x-6-15x^{2}+10=0
Me tāpiri te 10 ki ngā taha e rua.
28x+4-15x^{2}=0
Tāpirihia te -6 ki te 10, ka 4.
-15x^{2}+28x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=28 ab=-15\times 4=-60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -15x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Tātaihia te tapeke mō ia takirua.
a=30 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 28.
\left(-15x^{2}+30x\right)+\left(-2x+4\right)
Tuhia anō te -15x^{2}+28x+4 hei \left(-15x^{2}+30x\right)+\left(-2x+4\right).
15x\left(-x+2\right)+2\left(-x+2\right)
Tauwehea te 15x i te tuatahi me te 2 i te rōpū tuarua.
\left(-x+2\right)\left(15x+2\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{2}{15}
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te 15x+2=0.
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5\left(x+2\right)\left(3x-1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 9x^{2}-6x+1,15x^{2}+25x-10,3x-1.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 16.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
Pahekotia te 5x me 48x, ka 53x.
53x-6=5\left(x+2\right)\left(3x-1\right)
Tangohia te 16 i te 10, ka -6.
53x-6=\left(5x+10\right)\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
53x-6=15x^{2}+25x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x+10 ki te 3x-1 ka whakakotahi i ngā kupu rite.
53x-6-15x^{2}=25x-10
Tangohia te 15x^{2} mai i ngā taha e rua.
53x-6-15x^{2}-25x=-10
Tangohia te 25x mai i ngā taha e rua.
28x-6-15x^{2}=-10
Pahekotia te 53x me -25x, ka 28x.
28x-6-15x^{2}+10=0
Me tāpiri te 10 ki ngā taha e rua.
28x+4-15x^{2}=0
Tāpirihia te -6 ki te 10, ka 4.
-15x^{2}+28x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-28±\sqrt{28^{2}-4\left(-15\right)\times 4}}{2\left(-15\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -15 mō a, 28 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-15\right)\times 4}}{2\left(-15\right)}
Pūrua 28.
x=\frac{-28±\sqrt{784+60\times 4}}{2\left(-15\right)}
Whakareatia -4 ki te -15.
x=\frac{-28±\sqrt{784+240}}{2\left(-15\right)}
Whakareatia 60 ki te 4.
x=\frac{-28±\sqrt{1024}}{2\left(-15\right)}
Tāpiri 784 ki te 240.
x=\frac{-28±32}{2\left(-15\right)}
Tuhia te pūtakerua o te 1024.
x=\frac{-28±32}{-30}
Whakareatia 2 ki te -15.
x=\frac{4}{-30}
Nā, me whakaoti te whārite x=\frac{-28±32}{-30} ina he tāpiri te ±. Tāpiri -28 ki te 32.
x=-\frac{2}{15}
Whakahekea te hautanga \frac{4}{-30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{60}{-30}
Nā, me whakaoti te whārite x=\frac{-28±32}{-30} ina he tango te ±. Tango 32 mai i -28.
x=2
Whakawehe -60 ki te -30.
x=-\frac{2}{15} x=2
Kua oti te whārite te whakatau.
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5\left(x+2\right)\left(3x-1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 9x^{2}-6x+1,15x^{2}+25x-10,3x-1.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-1 ki te 16.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
Pahekotia te 5x me 48x, ka 53x.
53x-6=5\left(x+2\right)\left(3x-1\right)
Tangohia te 16 i te 10, ka -6.
53x-6=\left(5x+10\right)\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
53x-6=15x^{2}+25x-10
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x+10 ki te 3x-1 ka whakakotahi i ngā kupu rite.
53x-6-15x^{2}=25x-10
Tangohia te 15x^{2} mai i ngā taha e rua.
53x-6-15x^{2}-25x=-10
Tangohia te 25x mai i ngā taha e rua.
28x-6-15x^{2}=-10
Pahekotia te 53x me -25x, ka 28x.
28x-15x^{2}=-10+6
Me tāpiri te 6 ki ngā taha e rua.
28x-15x^{2}=-4
Tāpirihia te -10 ki te 6, ka -4.
-15x^{2}+28x=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-15x^{2}+28x}{-15}=-\frac{4}{-15}
Whakawehea ngā taha e rua ki te -15.
x^{2}+\frac{28}{-15}x=-\frac{4}{-15}
Mā te whakawehe ki te -15 ka wetekia te whakareanga ki te -15.
x^{2}-\frac{28}{15}x=-\frac{4}{-15}
Whakawehe 28 ki te -15.
x^{2}-\frac{28}{15}x=\frac{4}{15}
Whakawehe -4 ki te -15.
x^{2}-\frac{28}{15}x+\left(-\frac{14}{15}\right)^{2}=\frac{4}{15}+\left(-\frac{14}{15}\right)^{2}
Whakawehea te -\frac{28}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{14}{15}. Nā, tāpiria te pūrua o te -\frac{14}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{4}{15}+\frac{196}{225}
Pūruatia -\frac{14}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{256}{225}
Tāpiri \frac{4}{15} ki te \frac{196}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{14}{15}\right)^{2}=\frac{256}{225}
Tauwehea x^{2}-\frac{28}{15}x+\frac{196}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{15}\right)^{2}}=\sqrt{\frac{256}{225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{14}{15}=\frac{16}{15} x-\frac{14}{15}=-\frac{16}{15}
Whakarūnātia.
x=2 x=-\frac{2}{15}
Me tāpiri \frac{14}{15} ki ngā taha e rua o te whārite.