Whakaoti mō x (complex solution)
x=2+\sqrt{5}i\approx 2+2.236067977i
x=-\sqrt{5}i+2\approx 2-2.236067977i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { 9 } x ^ { 2 } + 1 = \frac { 4 } { 9 } x
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{9}x^{2}+1-\frac{4}{9}x=0
Tangohia te \frac{4}{9}x mai i ngā taha e rua.
\frac{1}{9}x^{2}-\frac{4}{9}x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\left(-\frac{4}{9}\right)^{2}-4\times \frac{1}{9}}}{2\times \frac{1}{9}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{9} mō a, -\frac{4}{9} mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16}{81}-4\times \frac{1}{9}}}{2\times \frac{1}{9}}
Pūruatia -\frac{4}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16}{81}-\frac{4}{9}}}{2\times \frac{1}{9}}
Whakareatia -4 ki te \frac{1}{9}.
x=\frac{-\left(-\frac{4}{9}\right)±\sqrt{-\frac{20}{81}}}{2\times \frac{1}{9}}
Tāpiri \frac{16}{81} ki te -\frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{4}{9}\right)±\frac{2\sqrt{5}i}{9}}{2\times \frac{1}{9}}
Tuhia te pūtakerua o te -\frac{20}{81}.
x=\frac{\frac{4}{9}±\frac{2\sqrt{5}i}{9}}{2\times \frac{1}{9}}
Ko te tauaro o -\frac{4}{9} ko \frac{4}{9}.
x=\frac{\frac{4}{9}±\frac{2\sqrt{5}i}{9}}{\frac{2}{9}}
Whakareatia 2 ki te \frac{1}{9}.
x=\frac{4+2\sqrt{5}i}{\frac{2}{9}\times 9}
Nā, me whakaoti te whārite x=\frac{\frac{4}{9}±\frac{2\sqrt{5}i}{9}}{\frac{2}{9}} ina he tāpiri te ±. Tāpiri \frac{4}{9} ki te \frac{2i\sqrt{5}}{9}.
x=2+\sqrt{5}i
Whakawehe \frac{4+2i\sqrt{5}}{9} ki te \frac{2}{9} mā te whakarea \frac{4+2i\sqrt{5}}{9} ki te tau huripoki o \frac{2}{9}.
x=\frac{-2\sqrt{5}i+4}{\frac{2}{9}\times 9}
Nā, me whakaoti te whārite x=\frac{\frac{4}{9}±\frac{2\sqrt{5}i}{9}}{\frac{2}{9}} ina he tango te ±. Tango \frac{2i\sqrt{5}}{9} mai i \frac{4}{9}.
x=-\sqrt{5}i+2
Whakawehe \frac{4-2i\sqrt{5}}{9} ki te \frac{2}{9} mā te whakarea \frac{4-2i\sqrt{5}}{9} ki te tau huripoki o \frac{2}{9}.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Kua oti te whārite te whakatau.
\frac{1}{9}x^{2}+1-\frac{4}{9}x=0
Tangohia te \frac{4}{9}x mai i ngā taha e rua.
\frac{1}{9}x^{2}-\frac{4}{9}x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{\frac{1}{9}x^{2}-\frac{4}{9}x}{\frac{1}{9}}=-\frac{1}{\frac{1}{9}}
Me whakarea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{\frac{4}{9}}{\frac{1}{9}}\right)x=-\frac{1}{\frac{1}{9}}
Mā te whakawehe ki te \frac{1}{9} ka wetekia te whakareanga ki te \frac{1}{9}.
x^{2}-4x=-\frac{1}{\frac{1}{9}}
Whakawehe -\frac{4}{9} ki te \frac{1}{9} mā te whakarea -\frac{4}{9} ki te tau huripoki o \frac{1}{9}.
x^{2}-4x=-9
Whakawehe -1 ki te \frac{1}{9} mā te whakarea -1 ki te tau huripoki o \frac{1}{9}.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-9+4
Pūrua -2.
x^{2}-4x+4=-5
Tāpiri -9 ki te 4.
\left(x-2\right)^{2}=-5
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
Whakarūnātia.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}