Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{362880}+\frac{1}{10!}+\frac{1}{11!}=\frac{122}{11!}
Ko te huarea o 9 ko 362880.
\frac{1}{362880}+\frac{1}{3628800}+\frac{1}{11!}=\frac{122}{11!}
Ko te huarea o 10 ko 3628800.
\frac{10}{3628800}+\frac{1}{3628800}+\frac{1}{11!}=\frac{122}{11!}
Ko te maha noa iti rawa atu o 362880 me 3628800 ko 3628800. Me tahuri \frac{1}{362880} me \frac{1}{3628800} ki te hautau me te tautūnga 3628800.
\frac{10+1}{3628800}+\frac{1}{11!}=\frac{122}{11!}
Tā te mea he rite te tauraro o \frac{10}{3628800} me \frac{1}{3628800}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{3628800}+\frac{1}{11!}=\frac{122}{11!}
Tāpirihia te 10 ki te 1, ka 11.
\frac{11}{3628800}+\frac{1}{39916800}=\frac{122}{11!}
Ko te huarea o 11 ko 39916800.
\frac{121}{39916800}+\frac{1}{39916800}=\frac{122}{11!}
Ko te maha noa iti rawa atu o 3628800 me 39916800 ko 39916800. Me tahuri \frac{11}{3628800} me \frac{1}{39916800} ki te hautau me te tautūnga 39916800.
\frac{121+1}{39916800}=\frac{122}{11!}
Tā te mea he rite te tauraro o \frac{121}{39916800} me \frac{1}{39916800}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{122}{39916800}=\frac{122}{11!}
Tāpirihia te 121 ki te 1, ka 122.
\frac{61}{19958400}=\frac{122}{11!}
Whakahekea te hautanga \frac{122}{39916800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{61}{19958400}=\frac{122}{39916800}
Ko te huarea o 11 ko 39916800.
\frac{61}{19958400}=\frac{61}{19958400}
Whakahekea te hautanga \frac{122}{39916800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\text{true}
Whakatauritea te \frac{61}{19958400} me te \frac{61}{19958400}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}