Whakaoti mō x
x=-2
x=8
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { 8 } x ^ { 2 } - \frac { 3 } { 4 } x = 2
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}x^{2}-\frac{3}{4}x=2
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{1}{8}x^{2}-\frac{3}{4}x-2=2-2
Me tango 2 mai i ngā taha e rua o te whārite.
\frac{1}{8}x^{2}-\frac{3}{4}x-2=0
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\left(-\frac{3}{4}\right)^{2}-4\times \frac{1}{8}\left(-2\right)}}{2\times \frac{1}{8}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{8} mō a, -\frac{3}{4} mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-4\times \frac{1}{8}\left(-2\right)}}{2\times \frac{1}{8}}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-\frac{1}{2}\left(-2\right)}}{2\times \frac{1}{8}}
Whakareatia -4 ki te \frac{1}{8}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}+1}}{2\times \frac{1}{8}}
Whakareatia -\frac{1}{2} ki te -2.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{25}{16}}}{2\times \frac{1}{8}}
Tāpiri \frac{9}{16} ki te 1.
x=\frac{-\left(-\frac{3}{4}\right)±\frac{5}{4}}{2\times \frac{1}{8}}
Tuhia te pūtakerua o te \frac{25}{16}.
x=\frac{\frac{3}{4}±\frac{5}{4}}{2\times \frac{1}{8}}
Ko te tauaro o -\frac{3}{4} ko \frac{3}{4}.
x=\frac{\frac{3}{4}±\frac{5}{4}}{\frac{1}{4}}
Whakareatia 2 ki te \frac{1}{8}.
x=\frac{2}{\frac{1}{4}}
Nā, me whakaoti te whārite x=\frac{\frac{3}{4}±\frac{5}{4}}{\frac{1}{4}} ina he tāpiri te ±. Tāpiri \frac{3}{4} ki te \frac{5}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=8
Whakawehe 2 ki te \frac{1}{4} mā te whakarea 2 ki te tau huripoki o \frac{1}{4}.
x=-\frac{\frac{1}{2}}{\frac{1}{4}}
Nā, me whakaoti te whārite x=\frac{\frac{3}{4}±\frac{5}{4}}{\frac{1}{4}} ina he tango te ±. Tango \frac{5}{4} mai i \frac{3}{4} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2
Whakawehe -\frac{1}{2} ki te \frac{1}{4} mā te whakarea -\frac{1}{2} ki te tau huripoki o \frac{1}{4}.
x=8 x=-2
Kua oti te whārite te whakatau.
\frac{1}{8}x^{2}-\frac{3}{4}x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{1}{8}x^{2}-\frac{3}{4}x}{\frac{1}{8}}=\frac{2}{\frac{1}{8}}
Me whakarea ngā taha e rua ki te 8.
x^{2}+\left(-\frac{\frac{3}{4}}{\frac{1}{8}}\right)x=\frac{2}{\frac{1}{8}}
Mā te whakawehe ki te \frac{1}{8} ka wetekia te whakareanga ki te \frac{1}{8}.
x^{2}-6x=\frac{2}{\frac{1}{8}}
Whakawehe -\frac{3}{4} ki te \frac{1}{8} mā te whakarea -\frac{3}{4} ki te tau huripoki o \frac{1}{8}.
x^{2}-6x=16
Whakawehe 2 ki te \frac{1}{8} mā te whakarea 2 ki te tau huripoki o \frac{1}{8}.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=16+9
Pūrua -3.
x^{2}-6x+9=25
Tāpiri 16 ki te 9.
\left(x-3\right)^{2}=25
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=5 x-3=-5
Whakarūnātia.
x=8 x=-2
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}