Aromātai
-\frac{49}{8}=-6.125
Tauwehe
-\frac{49}{8} = -6\frac{1}{8} = -6.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}-\frac{5\times 15}{12}
Tuhia te \frac{5}{12}\times 15 hei hautanga kotahi.
\frac{1}{8}-\frac{75}{12}
Whakareatia te 5 ki te 15, ka 75.
\frac{1}{8}-\frac{25}{4}
Whakahekea te hautanga \frac{75}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{8}-\frac{50}{8}
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{1}{8} me \frac{25}{4} ki te hautau me te tautūnga 8.
\frac{1-50}{8}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{50}{8}, me tango rāua mā te tango i ō raua taurunga.
-\frac{49}{8}
Tangohia te 50 i te 1, ka -49.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}