Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}\times \frac{157}{50}\times 100-\frac{1}{4}\times 3.14\times 25=\frac{1}{2}\times 5\times 5
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1\times 157}{8\times 50}\times 100-\frac{1}{4}\times 3.14\times 25=\frac{1}{2}\times 5\times 5
Me whakarea te \frac{1}{8} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{157}{400}\times 100-\frac{1}{4}\times 3.14\times 25=\frac{1}{2}\times 5\times 5
Mahia ngā whakarea i roto i te hautanga \frac{1\times 157}{8\times 50}.
\frac{157\times 100}{400}-\frac{1}{4}\times 3.14\times 25=\frac{1}{2}\times 5\times 5
Tuhia te \frac{157}{400}\times 100 hei hautanga kotahi.
\frac{15700}{400}-\frac{1}{4}\times 3.14\times 25=\frac{1}{2}\times 5\times 5
Whakareatia te 157 ki te 100, ka 15700.
\frac{157}{4}-\frac{1}{4}\times 3.14\times 25=\frac{1}{2}\times 5\times 5
Whakahekea te hautanga \frac{15700}{400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 100.
\frac{157}{4}-\frac{1}{4}\times \frac{157}{50}\times 25=\frac{1}{2}\times 5\times 5
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{157}{4}-\frac{1\times 157}{4\times 50}\times 25=\frac{1}{2}\times 5\times 5
Me whakarea te \frac{1}{4} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{157}{4}-\frac{157}{200}\times 25=\frac{1}{2}\times 5\times 5
Mahia ngā whakarea i roto i te hautanga \frac{1\times 157}{4\times 50}.
\frac{157}{4}-\frac{157\times 25}{200}=\frac{1}{2}\times 5\times 5
Tuhia te \frac{157}{200}\times 25 hei hautanga kotahi.
\frac{157}{4}-\frac{3925}{200}=\frac{1}{2}\times 5\times 5
Whakareatia te 157 ki te 25, ka 3925.
\frac{157}{4}-\frac{157}{8}=\frac{1}{2}\times 5\times 5
Whakahekea te hautanga \frac{3925}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{314}{8}-\frac{157}{8}=\frac{1}{2}\times 5\times 5
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{157}{4} me \frac{157}{8} ki te hautau me te tautūnga 8.
\frac{314-157}{8}=\frac{1}{2}\times 5\times 5
Tā te mea he rite te tauraro o \frac{314}{8} me \frac{157}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{157}{8}=\frac{1}{2}\times 5\times 5
Tangohia te 157 i te 314, ka 157.
\frac{157}{8}=\frac{5}{2}\times 5
Whakareatia te \frac{1}{2} ki te 5, ka \frac{5}{2}.
\frac{157}{8}=\frac{5\times 5}{2}
Tuhia te \frac{5}{2}\times 5 hei hautanga kotahi.
\frac{157}{8}=\frac{25}{2}
Whakareatia te 5 ki te 5, ka 25.
\frac{157}{8}=\frac{100}{8}
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri \frac{157}{8} me \frac{25}{2} ki te hautau me te tautūnga 8.
\text{false}
Whakatauritea te \frac{157}{8} me te \frac{100}{8}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}