Aromātai
\frac{2567}{360}\approx 7.130555556
Tauwehe
\frac{17 \cdot 151}{2 ^ {3} \cdot 3 ^ {2} \cdot 5} = 7\frac{47}{360} = 7.1305555555555555
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}+\frac{32}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Me tahuri te 4 ki te hautau \frac{32}{8}.
\frac{1+32}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{32}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{33}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Tāpirihia te 1 ki te 32, ka 33.
\frac{33}{8}-\left(\frac{4}{3}\times \frac{1}{3}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{33}{8}-\left(\frac{4\times 1}{3\times 3}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Me whakarea te \frac{4}{3} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{33}{8}-\left(\frac{4}{9}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 1}{3\times 3}.
\frac{33}{8}-\left(\frac{16}{36}-\frac{9}{36}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Ko te maha noa iti rawa atu o 9 me 4 ko 36. Me tahuri \frac{4}{9} me \frac{1}{4} ki te hautau me te tautūnga 36.
\frac{33}{8}-\frac{16-9}{36}+\frac{\frac{8}{5}}{\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{16}{36} me \frac{9}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{33}{8}-\frac{7}{36}+\frac{\frac{8}{5}}{\frac{1}{2}}
Tangohia te 9 i te 16, ka 7.
\frac{297}{72}-\frac{14}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
Ko te maha noa iti rawa atu o 8 me 36 ko 72. Me tahuri \frac{33}{8} me \frac{7}{36} ki te hautau me te tautūnga 72.
\frac{297-14}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{297}{72} me \frac{14}{72}, me tango rāua mā te tango i ō raua taurunga.
\frac{283}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
Tangohia te 14 i te 297, ka 283.
\frac{283}{72}+\frac{8}{5}\times 2
Whakawehe \frac{8}{5} ki te \frac{1}{2} mā te whakarea \frac{8}{5} ki te tau huripoki o \frac{1}{2}.
\frac{283}{72}+\frac{8\times 2}{5}
Tuhia te \frac{8}{5}\times 2 hei hautanga kotahi.
\frac{283}{72}+\frac{16}{5}
Whakareatia te 8 ki te 2, ka 16.
\frac{1415}{360}+\frac{1152}{360}
Ko te maha noa iti rawa atu o 72 me 5 ko 360. Me tahuri \frac{283}{72} me \frac{16}{5} ki te hautau me te tautūnga 360.
\frac{1415+1152}{360}
Tā te mea he rite te tauraro o \frac{1415}{360} me \frac{1152}{360}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2567}{360}
Tāpirihia te 1415 ki te 1152, ka 2567.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}