Whakaoti mō k
k=\frac{1}{6}\approx 0.166666667
Tohaina
Kua tāruatia ki te papatopenga
1=2-6k
Tē taea kia ōrite te tāupe k ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6k^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 6k^{2},3k^{2},k.
2-6k=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-6k=1-2
Tangohia te 2 mai i ngā taha e rua.
-6k=-1
Tangohia te 2 i te 1, ka -1.
k=\frac{-1}{-6}
Whakawehea ngā taha e rua ki te -6.
k=\frac{1}{6}
Ka taea te hautanga \frac{-1}{-6} te whakamāmā ki te \frac{1}{6} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}