Whakaoti mō x
x = \frac{7}{5} = 1\frac{2}{5} = 1.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
10-10x-\left(12-4x\right)\times 4=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20\left(x-3\right)\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 6-2x,5-5x,12-4x,10-10x.
10-10x-\left(48-16x\right)=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te 12-4x ki te 4.
10-10x-48+16x=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Hei kimi i te tauaro o 48-16x, kimihia te tauaro o ia taurangi.
-38-10x+16x=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Tangohia te 48 i te 10, ka -38.
-38+6x=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Pahekotia te -10x me 16x, ka 6x.
-38+6x=50-50x-\left(6-2x\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te 5-5x ki te 10.
-38+6x=50-50x-\left(18-6x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6-2x ki te 3.
-38+6x=50-50x-18+6x
Hei kimi i te tauaro o 18-6x, kimihia te tauaro o ia taurangi.
-38+6x=32-50x+6x
Tangohia te 18 i te 50, ka 32.
-38+6x=32-44x
Pahekotia te -50x me 6x, ka -44x.
-38+6x+44x=32
Me tāpiri te 44x ki ngā taha e rua.
-38+50x=32
Pahekotia te 6x me 44x, ka 50x.
50x=32+38
Me tāpiri te 38 ki ngā taha e rua.
50x=70
Tāpirihia te 32 ki te 38, ka 70.
x=\frac{70}{50}
Whakawehea ngā taha e rua ki te 50.
x=\frac{7}{5}
Whakahekea te hautanga \frac{70}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}