Aromātai
\frac{40E_{4}}{3}
Kimi Pārōnaki e ai ki E_4
\frac{40}{3} = 13\frac{1}{3} = 13.333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{80}{6}E_{4}
Whakareatia te \frac{1}{6} ki te 80, ka \frac{80}{6}.
\frac{40}{3}E_{4}
Whakahekea te hautanga \frac{80}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}E_{4}}(\frac{80}{6}E_{4})
Whakareatia te \frac{1}{6} ki te 80, ka \frac{80}{6}.
\frac{\mathrm{d}}{\mathrm{d}E_{4}}(\frac{40}{3}E_{4})
Whakahekea te hautanga \frac{80}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{40}{3}E_{4}^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{40}{3}E_{4}^{0}
Tango 1 mai i 1.
\frac{40}{3}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{40}{3}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}