Aromātai
\frac{649}{24}\approx 27.041666667
Tauwehe
\frac{11 \cdot 59}{2 ^ {3} \cdot 3} = 27\frac{1}{24} = 27.041666666666668
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{6}\left(\frac{6+1}{2}-\frac{2\times 4+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{6}\left(\frac{7}{2}-\frac{2\times 4+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Tāpirihia te 6 ki te 1, ka 7.
\frac{1}{6}\left(\frac{7}{2}-\frac{8+1}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Whakareatia te 2 ki te 4, ka 8.
\frac{1}{6}\left(\frac{7}{2}-\frac{9}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Tāpirihia te 8 ki te 1, ka 9.
\frac{1}{6}\left(\frac{14}{4}-\frac{9}{4}\right)+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{7}{2} me \frac{9}{4} ki te hautau me te tautūnga 4.
\frac{1}{6}\times \frac{14-9}{4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Tā te mea he rite te tauraro o \frac{14}{4} me \frac{9}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}\times \frac{5}{4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Tangohia te 9 i te 14, ka 5.
\frac{1\times 5}{6\times 4}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Me whakarea te \frac{1}{6} ki te \frac{5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{24}+\frac{\frac{5\times 8+1}{8}}{\frac{3}{16}}-\frac{1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 5}{6\times 4}.
\frac{5}{24}+\frac{\left(5\times 8+1\right)\times 16}{8\times 3}-\frac{1}{2}
Whakawehe \frac{5\times 8+1}{8} ki te \frac{3}{16} mā te whakarea \frac{5\times 8+1}{8} ki te tau huripoki o \frac{3}{16}.
\frac{5}{24}+\frac{2\left(1+5\times 8\right)}{3}-\frac{1}{2}
Me whakakore tahi te 8 i te taurunga me te tauraro.
\frac{5}{24}+\frac{2\left(1+40\right)}{3}-\frac{1}{2}
Whakareatia te 5 ki te 8, ka 40.
\frac{5}{24}+\frac{2\times 41}{3}-\frac{1}{2}
Tāpirihia te 1 ki te 40, ka 41.
\frac{5}{24}+\frac{82}{3}-\frac{1}{2}
Whakareatia te 2 ki te 41, ka 82.
\frac{5}{24}+\frac{656}{24}-\frac{1}{2}
Ko te maha noa iti rawa atu o 24 me 3 ko 24. Me tahuri \frac{5}{24} me \frac{82}{3} ki te hautau me te tautūnga 24.
\frac{5+656}{24}-\frac{1}{2}
Tā te mea he rite te tauraro o \frac{5}{24} me \frac{656}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{661}{24}-\frac{1}{2}
Tāpirihia te 5 ki te 656, ka 661.
\frac{661}{24}-\frac{12}{24}
Ko te maha noa iti rawa atu o 24 me 2 ko 24. Me tahuri \frac{661}{24} me \frac{1}{2} ki te hautau me te tautūnga 24.
\frac{661-12}{24}
Tā te mea he rite te tauraro o \frac{661}{24} me \frac{12}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{649}{24}
Tangohia te 12 i te 661, ka 649.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}