Aromātai
\frac{236}{255}\approx 0.925490196
Tauwehe
\frac{2 ^ {2} \cdot 59}{3 \cdot 5 \cdot 17} = 0.9254901960784314
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{30}+\frac{6}{30}+\frac{1}{17}+\frac{1}{2}
Ko te maha noa iti rawa atu o 6 me 5 ko 30. Me tahuri \frac{1}{6} me \frac{1}{5} ki te hautau me te tautūnga 30.
\frac{5+6}{30}+\frac{1}{17}+\frac{1}{2}
Tā te mea he rite te tauraro o \frac{5}{30} me \frac{6}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{30}+\frac{1}{17}+\frac{1}{2}
Tāpirihia te 5 ki te 6, ka 11.
\frac{187}{510}+\frac{30}{510}+\frac{1}{2}
Ko te maha noa iti rawa atu o 30 me 17 ko 510. Me tahuri \frac{11}{30} me \frac{1}{17} ki te hautau me te tautūnga 510.
\frac{187+30}{510}+\frac{1}{2}
Tā te mea he rite te tauraro o \frac{187}{510} me \frac{30}{510}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{217}{510}+\frac{1}{2}
Tāpirihia te 187 ki te 30, ka 217.
\frac{217}{510}+\frac{255}{510}
Ko te maha noa iti rawa atu o 510 me 2 ko 510. Me tahuri \frac{217}{510} me \frac{1}{2} ki te hautau me te tautūnga 510.
\frac{217+255}{510}
Tā te mea he rite te tauraro o \frac{217}{510} me \frac{255}{510}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{472}{510}
Tāpirihia te 217 ki te 255, ka 472.
\frac{236}{255}
Whakahekea te hautanga \frac{472}{510} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}