Whakaoti mō x
x=35000
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{50}x\times 35000+\frac{1}{50}x\left(-1\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{50}x ki te 35000-x.
\frac{1}{50}x\times 35000+\frac{1}{50}x^{2}\left(-1\right)=0
Whakareatia te x ki te x, ka x^{2}.
\frac{35000}{50}x+\frac{1}{50}x^{2}\left(-1\right)=0
Whakareatia te \frac{1}{50} ki te 35000, ka \frac{35000}{50}.
700x+\frac{1}{50}x^{2}\left(-1\right)=0
Whakawehea te 35000 ki te 50, kia riro ko 700.
700x-\frac{1}{50}x^{2}=0
Whakareatia te \frac{1}{50} ki te -1, ka -\frac{1}{50}.
x\left(700-\frac{1}{50}x\right)=0
Tauwehea te x.
x=0 x=35000
Hei kimi otinga whārite, me whakaoti te x=0 me te 700-\frac{x}{50}=0.
\frac{1}{50}x\times 35000+\frac{1}{50}x\left(-1\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{50}x ki te 35000-x.
\frac{1}{50}x\times 35000+\frac{1}{50}x^{2}\left(-1\right)=0
Whakareatia te x ki te x, ka x^{2}.
\frac{35000}{50}x+\frac{1}{50}x^{2}\left(-1\right)=0
Whakareatia te \frac{1}{50} ki te 35000, ka \frac{35000}{50}.
700x+\frac{1}{50}x^{2}\left(-1\right)=0
Whakawehea te 35000 ki te 50, kia riro ko 700.
700x-\frac{1}{50}x^{2}=0
Whakareatia te \frac{1}{50} ki te -1, ka -\frac{1}{50}.
-\frac{1}{50}x^{2}+700x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-700±\sqrt{700^{2}}}{2\left(-\frac{1}{50}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{50} mō a, 700 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-700±700}{2\left(-\frac{1}{50}\right)}
Tuhia te pūtakerua o te 700^{2}.
x=\frac{-700±700}{-\frac{1}{25}}
Whakareatia 2 ki te -\frac{1}{50}.
x=\frac{0}{-\frac{1}{25}}
Nā, me whakaoti te whārite x=\frac{-700±700}{-\frac{1}{25}} ina he tāpiri te ±. Tāpiri -700 ki te 700.
x=0
Whakawehe 0 ki te -\frac{1}{25} mā te whakarea 0 ki te tau huripoki o -\frac{1}{25}.
x=-\frac{1400}{-\frac{1}{25}}
Nā, me whakaoti te whārite x=\frac{-700±700}{-\frac{1}{25}} ina he tango te ±. Tango 700 mai i -700.
x=35000
Whakawehe -1400 ki te -\frac{1}{25} mā te whakarea -1400 ki te tau huripoki o -\frac{1}{25}.
x=0 x=35000
Kua oti te whārite te whakatau.
\frac{1}{50}x\times 35000+\frac{1}{50}x\left(-1\right)x=0
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{50}x ki te 35000-x.
\frac{1}{50}x\times 35000+\frac{1}{50}x^{2}\left(-1\right)=0
Whakareatia te x ki te x, ka x^{2}.
\frac{35000}{50}x+\frac{1}{50}x^{2}\left(-1\right)=0
Whakareatia te \frac{1}{50} ki te 35000, ka \frac{35000}{50}.
700x+\frac{1}{50}x^{2}\left(-1\right)=0
Whakawehea te 35000 ki te 50, kia riro ko 700.
700x-\frac{1}{50}x^{2}=0
Whakareatia te \frac{1}{50} ki te -1, ka -\frac{1}{50}.
-\frac{1}{50}x^{2}+700x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{1}{50}x^{2}+700x}{-\frac{1}{50}}=\frac{0}{-\frac{1}{50}}
Me whakarea ngā taha e rua ki te -50.
x^{2}+\frac{700}{-\frac{1}{50}}x=\frac{0}{-\frac{1}{50}}
Mā te whakawehe ki te -\frac{1}{50} ka wetekia te whakareanga ki te -\frac{1}{50}.
x^{2}-35000x=\frac{0}{-\frac{1}{50}}
Whakawehe 700 ki te -\frac{1}{50} mā te whakarea 700 ki te tau huripoki o -\frac{1}{50}.
x^{2}-35000x=0
Whakawehe 0 ki te -\frac{1}{50} mā te whakarea 0 ki te tau huripoki o -\frac{1}{50}.
x^{2}-35000x+\left(-17500\right)^{2}=\left(-17500\right)^{2}
Whakawehea te -35000, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -17500. Nā, tāpiria te pūrua o te -17500 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-35000x+306250000=306250000
Pūrua -17500.
\left(x-17500\right)^{2}=306250000
Tauwehea x^{2}-35000x+306250000. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-17500\right)^{2}}=\sqrt{306250000}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-17500=17500 x-17500=-17500
Whakarūnātia.
x=35000 x=0
Me tāpiri 17500 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}