Whakaoti mō x
x=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}-\frac{1}{100}\left(10x-40\right)\right)=20\left(x-1\right)-50\left(3-x\right)
Me whakarea ngā taha e rua o te whārite ki te 100, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,10,100.
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}-\frac{1}{100}\times 10x-\frac{1}{100}\left(-40\right)\right)=20\left(x-1\right)-50\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{100} ki te 10x-40.
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}+\frac{-10}{100}x-\frac{1}{100}\left(-40\right)\right)=20\left(x-1\right)-50\left(3-x\right)
Tuhia te -\frac{1}{100}\times 10 hei hautanga kotahi.
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}-\frac{1}{10}x-\frac{1}{100}\left(-40\right)\right)=20\left(x-1\right)-50\left(3-x\right)
Whakahekea te hautanga \frac{-10}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}-\frac{1}{10}x+\frac{-\left(-40\right)}{100}\right)=20\left(x-1\right)-50\left(3-x\right)
Tuhia te -\frac{1}{100}\left(-40\right) hei hautanga kotahi.
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}-\frac{1}{10}x+\frac{40}{100}\right)=20\left(x-1\right)-50\left(3-x\right)
Whakareatia te -1 ki te -40, ka 40.
20x-100\left(\frac{3}{2}x-\frac{x-1}{10}-\frac{1}{10}x+\frac{2}{5}\right)=20\left(x-1\right)-50\left(3-x\right)
Whakahekea te hautanga \frac{40}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
20x-100\left(\frac{7}{5}x-\frac{x-1}{10}+\frac{2}{5}\right)=20\left(x-1\right)-50\left(3-x\right)
Pahekotia te \frac{3}{2}x me -\frac{1}{10}x, ka \frac{7}{5}x.
20x-100\left(\frac{7}{5}x-\frac{x-1}{10}+\frac{2\times 2}{10}\right)=20\left(x-1\right)-50\left(3-x\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 10 me 5 ko 10. Whakareatia \frac{2}{5} ki te \frac{2}{2}.
20x-100\left(\frac{7}{5}x+\frac{-\left(x-1\right)+2\times 2}{10}\right)=20\left(x-1\right)-50\left(3-x\right)
Tā te mea he rite te tauraro o -\frac{x-1}{10} me \frac{2\times 2}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
20x-100\left(\frac{7}{5}x+\frac{-x+1+4}{10}\right)=20\left(x-1\right)-50\left(3-x\right)
Mahia ngā whakarea i roto o -\left(x-1\right)+2\times 2.
20x-100\left(\frac{7}{5}x+\frac{-x+5}{10}\right)=20\left(x-1\right)-50\left(3-x\right)
Whakakotahitia ngā kupu rite i -x+1+4.
20x-100\left(\frac{7}{5}x+\frac{-x+5}{10}\right)=20x-20-50\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 20 ki te x-1.
20x-100\left(\frac{7}{5}x+\frac{-x+5}{10}\right)=20x-20-150+50x
Whakamahia te āhuatanga tohatoha hei whakarea te -50 ki te 3-x.
20x-100\left(\frac{7}{5}x+\frac{-x+5}{10}\right)=20x-170+50x
Tangohia te 150 i te -20, ka -170.
20x-100\left(\frac{7}{5}x+\frac{-x+5}{10}\right)=70x-170
Pahekotia te 20x me 50x, ka 70x.
20x-100\left(\frac{7}{5}x-\frac{1}{10}x+\frac{1}{2}\right)=70x-170
Whakawehea ia wā o -x+5 ki te 10, kia riro ko -\frac{1}{10}x+\frac{1}{2}.
20x-100\left(\frac{13}{10}x+\frac{1}{2}\right)=70x-170
Pahekotia te \frac{7}{5}x me -\frac{1}{10}x, ka \frac{13}{10}x.
20x-100\times \frac{13}{10}x-100\times \frac{1}{2}=70x-170
Whakamahia te āhuatanga tohatoha hei whakarea te -100 ki te \frac{13}{10}x+\frac{1}{2}.
20x+\frac{-100\times 13}{10}x-100\times \frac{1}{2}=70x-170
Tuhia te -100\times \frac{13}{10} hei hautanga kotahi.
20x+\frac{-1300}{10}x-100\times \frac{1}{2}=70x-170
Whakareatia te -100 ki te 13, ka -1300.
20x-130x-100\times \frac{1}{2}=70x-170
Whakawehea te -1300 ki te 10, kia riro ko -130.
20x-130x+\frac{-100}{2}=70x-170
Whakareatia te -100 ki te \frac{1}{2}, ka \frac{-100}{2}.
20x-130x-50=70x-170
Whakawehea te -100 ki te 2, kia riro ko -50.
-110x-50=70x-170
Pahekotia te 20x me -130x, ka -110x.
-110x-50-70x=-170
Tangohia te 70x mai i ngā taha e rua.
-180x-50=-170
Pahekotia te -110x me -70x, ka -180x.
-180x=-170+50
Me tāpiri te 50 ki ngā taha e rua.
-180x=-120
Tāpirihia te -170 ki te 50, ka -120.
x=\frac{-120}{-180}
Whakawehea ngā taha e rua ki te -180.
x=\frac{2}{3}
Whakahekea te hautanga \frac{-120}{-180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -60.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}