Whakaoti mō x
x=25
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}x+\frac{1}{5}\times 20=-x+14+\frac{4}{5}x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te x+20.
\frac{1}{5}x+\frac{20}{5}=-x+14+\frac{4}{5}x
Whakareatia te \frac{1}{5} ki te 20, ka \frac{20}{5}.
\frac{1}{5}x+4=-x+14+\frac{4}{5}x
Whakawehea te 20 ki te 5, kia riro ko 4.
\frac{1}{5}x+4+x=14+\frac{4}{5}x
Me tāpiri te x ki ngā taha e rua.
\frac{6}{5}x+4=14+\frac{4}{5}x
Pahekotia te \frac{1}{5}x me x, ka \frac{6}{5}x.
\frac{6}{5}x+4-\frac{4}{5}x=14
Tangohia te \frac{4}{5}x mai i ngā taha e rua.
\frac{2}{5}x+4=14
Pahekotia te \frac{6}{5}x me -\frac{4}{5}x, ka \frac{2}{5}x.
\frac{2}{5}x=14-4
Tangohia te 4 mai i ngā taha e rua.
\frac{2}{5}x=10
Tangohia te 4 i te 14, ka 10.
x=10\times \frac{5}{2}
Me whakarea ngā taha e rua ki te \frac{5}{2}, te tau utu o \frac{2}{5}.
x=\frac{10\times 5}{2}
Tuhia te 10\times \frac{5}{2} hei hautanga kotahi.
x=\frac{50}{2}
Whakareatia te 10 ki te 5, ka 50.
x=25
Whakawehea te 50 ki te 2, kia riro ko 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}