Whakaoti mō x
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}\times 3+\frac{1}{5}\left(-\frac{3}{2}\right)x-3\left(2-\frac{5}{4}x\right)=36
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te 3-\frac{3}{2}x.
\frac{3}{5}+\frac{1}{5}\left(-\frac{3}{2}\right)x-3\left(2-\frac{5}{4}x\right)=36
Whakareatia te \frac{1}{5} ki te 3, ka \frac{3}{5}.
\frac{3}{5}+\frac{1\left(-3\right)}{5\times 2}x-3\left(2-\frac{5}{4}x\right)=36
Me whakarea te \frac{1}{5} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{5}+\frac{-3}{10}x-3\left(2-\frac{5}{4}x\right)=36
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-3\right)}{5\times 2}.
\frac{3}{5}-\frac{3}{10}x-3\left(2-\frac{5}{4}x\right)=36
Ka taea te hautanga \frac{-3}{10} te tuhi anō ko -\frac{3}{10} mā te tango i te tohu tōraro.
\frac{3}{5}-\frac{3}{10}x-6-3\left(-\frac{5}{4}\right)x=36
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2-\frac{5}{4}x.
\frac{3}{5}-\frac{3}{10}x-6+\frac{-3\left(-5\right)}{4}x=36
Tuhia te -3\left(-\frac{5}{4}\right) hei hautanga kotahi.
\frac{3}{5}-\frac{3}{10}x-6+\frac{15}{4}x=36
Whakareatia te -3 ki te -5, ka 15.
\frac{3}{5}-\frac{3}{10}x-\frac{30}{5}+\frac{15}{4}x=36
Me tahuri te 6 ki te hautau \frac{30}{5}.
\frac{3-30}{5}-\frac{3}{10}x+\frac{15}{4}x=36
Tā te mea he rite te tauraro o \frac{3}{5} me \frac{30}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{27}{5}-\frac{3}{10}x+\frac{15}{4}x=36
Tangohia te 30 i te 3, ka -27.
-\frac{27}{5}+\frac{69}{20}x=36
Pahekotia te -\frac{3}{10}x me \frac{15}{4}x, ka \frac{69}{20}x.
\frac{69}{20}x=36+\frac{27}{5}
Me tāpiri te \frac{27}{5} ki ngā taha e rua.
\frac{69}{20}x=\frac{180}{5}+\frac{27}{5}
Me tahuri te 36 ki te hautau \frac{180}{5}.
\frac{69}{20}x=\frac{180+27}{5}
Tā te mea he rite te tauraro o \frac{180}{5} me \frac{27}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{69}{20}x=\frac{207}{5}
Tāpirihia te 180 ki te 27, ka 207.
x=\frac{207}{5}\times \frac{20}{69}
Me whakarea ngā taha e rua ki te \frac{20}{69}, te tau utu o \frac{69}{20}.
x=\frac{207\times 20}{5\times 69}
Me whakarea te \frac{207}{5} ki te \frac{20}{69} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{4140}{345}
Mahia ngā whakarea i roto i te hautanga \frac{207\times 20}{5\times 69}.
x=12
Whakawehea te 4140 ki te 345, kia riro ko 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}