Aromātai
\frac{17}{8}=2.125
Tauwehe
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}\times \frac{5}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Whakawehe \frac{1}{5} ki te \frac{2}{5} mā te whakarea \frac{1}{5} ki te tau huripoki o \frac{2}{5}.
\frac{1\times 5}{5\times 2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Me whakarea te \frac{1}{5} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{1}{2}\left(\frac{2}{4}-\frac{1}{4}\right)-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\frac{1}{2}\times \frac{2-1}{4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}\times \frac{1}{4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Tangohia te 1 i te 2, ka 1.
\frac{1\times 1}{2\times 4}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Me whakarea te \frac{1}{2} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{8}-\frac{\frac{2\times 3+2}{3}}{-\frac{2}{3}}\times \frac{1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{2\times 4}.
\frac{1}{8}-\frac{\left(2\times 3+2\right)\times 3}{3\left(-2\right)}\times \frac{1}{2}
Whakawehe \frac{2\times 3+2}{3} ki te -\frac{2}{3} mā te whakarea \frac{2\times 3+2}{3} ki te tau huripoki o -\frac{2}{3}.
\frac{1}{8}-\frac{2+2\times 3}{-2}\times \frac{1}{2}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{1}{8}-\frac{2+6}{-2}\times \frac{1}{2}
Whakareatia te 2 ki te 3, ka 6.
\frac{1}{8}-\frac{8}{-2}\times \frac{1}{2}
Tāpirihia te 2 ki te 6, ka 8.
\frac{1}{8}-\left(-4\times \frac{1}{2}\right)
Whakawehea te 8 ki te -2, kia riro ko -4.
\frac{1}{8}-\frac{-4}{2}
Whakareatia te -4 ki te \frac{1}{2}, ka \frac{-4}{2}.
\frac{1}{8}-\left(-2\right)
Whakawehea te -4 ki te 2, kia riro ko -2.
\frac{1}{8}+2
Ko te tauaro o -2 ko 2.
\frac{1}{8}+\frac{16}{8}
Me tahuri te 2 ki te hautau \frac{16}{8}.
\frac{1+16}{8}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{16}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{17}{8}
Tāpirihia te 1 ki te 16, ka 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}