Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{5}+\frac{2}{3}\times 9\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te \sqrt{0\times 3} ki te \sqrt{0\times 3}, ka \left(\sqrt{0\times 3}\right)^{2}.
\frac{1}{5}+\frac{2\times 9}{3}\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Tuhia te \frac{2}{3}\times 9 hei hautanga kotahi.
\frac{1}{5}+\frac{18}{3}\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te 2 ki te 9, ka 18.
\frac{1}{5}+6\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakawehea te 18 ki te 3, kia riro ko 6.
\frac{1}{5}+0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te 6 ki te 0, ka 0.
\frac{1}{5}+0-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te 0 ki te 1, ka 0.
\frac{1}{5}-\left(\sqrt{0\times 3}\right)^{2}
Tāpirihia te \frac{1}{5} ki te 0, ka \frac{1}{5}.
\frac{1}{5}-\left(\sqrt{0}\right)^{2}
Whakareatia te 0 ki te 3, ka 0.
\frac{1}{5}-0
Ko te pūrua o \sqrt{0} ko 0.
\frac{1}{5}
Tangohia te 0 i te \frac{1}{5}, ka \frac{1}{5}.