Aromātai
\frac{1}{5}=0.2
Tauwehe
\frac{1}{5} = 0.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}+\frac{2}{3}\times 9\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te \sqrt{0\times 3} ki te \sqrt{0\times 3}, ka \left(\sqrt{0\times 3}\right)^{2}.
\frac{1}{5}+\frac{2\times 9}{3}\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Tuhia te \frac{2}{3}\times 9 hei hautanga kotahi.
\frac{1}{5}+\frac{18}{3}\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te 2 ki te 9, ka 18.
\frac{1}{5}+6\times 0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakawehea te 18 ki te 3, kia riro ko 6.
\frac{1}{5}+0\times 1-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te 6 ki te 0, ka 0.
\frac{1}{5}+0-\left(\sqrt{0\times 3}\right)^{2}
Whakareatia te 0 ki te 1, ka 0.
\frac{1}{5}-\left(\sqrt{0\times 3}\right)^{2}
Tāpirihia te \frac{1}{5} ki te 0, ka \frac{1}{5}.
\frac{1}{5}-\left(\sqrt{0}\right)^{2}
Whakareatia te 0 ki te 3, ka 0.
\frac{1}{5}-0
Ko te pūrua o \sqrt{0} ko 0.
\frac{1}{5}
Tangohia te 0 i te \frac{1}{5}, ka \frac{1}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}