Aromātai
\frac{187}{60}\approx 3.116666667
Tauwehe
\frac{11 \cdot 17}{2 ^ {2} \cdot 3 \cdot 5} = 3\frac{7}{60} = 3.1166666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}+\frac{2}{3}\times 5-\frac{5}{12}
Whakawehe \frac{2}{3} ki te \frac{1}{5} mā te whakarea \frac{2}{3} ki te tau huripoki o \frac{1}{5}.
\frac{1}{5}+\frac{2\times 5}{3}-\frac{5}{12}
Tuhia te \frac{2}{3}\times 5 hei hautanga kotahi.
\frac{1}{5}+\frac{10}{3}-\frac{5}{12}
Whakareatia te 2 ki te 5, ka 10.
\frac{3}{15}+\frac{50}{15}-\frac{5}{12}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{1}{5} me \frac{10}{3} ki te hautau me te tautūnga 15.
\frac{3+50}{15}-\frac{5}{12}
Tā te mea he rite te tauraro o \frac{3}{15} me \frac{50}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{53}{15}-\frac{5}{12}
Tāpirihia te 3 ki te 50, ka 53.
\frac{212}{60}-\frac{25}{60}
Ko te maha noa iti rawa atu o 15 me 12 ko 60. Me tahuri \frac{53}{15} me \frac{5}{12} ki te hautau me te tautūnga 60.
\frac{212-25}{60}
Tā te mea he rite te tauraro o \frac{212}{60} me \frac{25}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{187}{60}
Tangohia te 25 i te 212, ka 187.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}