Aromātai
3+\frac{3}{4}i=3+0.75i
Wāhi Tūturu
3
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
\frac { 1 } { 4 i } - 2 i ^ { 2 } - i ^ { 3 } + i ^ { 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{i}{-4}-2i^{2}-i^{3}+i^{4}
Me whakarea tahi te taurunga me te tauraro o \frac{1}{4i} ki te wae pohewa i.
-\frac{1}{4}i-2i^{2}-i^{3}+i^{4}
Whakawehea te i ki te -4, kia riro ko -\frac{1}{4}i.
-\frac{1}{4}i-2\left(-1\right)-i^{3}+i^{4}
Tātaihia te i mā te pū o 2, kia riro ko -1.
-\frac{1}{4}i-\left(-2\right)-i^{3}+i^{4}
Whakareatia te 2 ki te -1, ka -2.
-\frac{1}{4}i+2-i^{3}+i^{4}
Ko te tauaro o -2 ko 2.
-\frac{1}{4}i+2-\left(-i\right)+i^{4}
Tātaihia te i mā te pū o 3, kia riro ko -i.
-\frac{1}{4}i+2+i+i^{4}
Ko te tauaro o -i ko i.
i^{4}+2+\frac{3}{4}i
Mahia ngā tāpiri.
1+2+\frac{3}{4}i
Tātaihia te i mā te pū o 4, kia riro ko 1.
3+\frac{3}{4}i
Mahia ngā tāpiri.
Re(\frac{i}{-4}-2i^{2}-i^{3}+i^{4})
Me whakarea tahi te taurunga me te tauraro o \frac{1}{4i} ki te wae pohewa i.
Re(-\frac{1}{4}i-2i^{2}-i^{3}+i^{4})
Whakawehea te i ki te -4, kia riro ko -\frac{1}{4}i.
Re(-\frac{1}{4}i-2\left(-1\right)-i^{3}+i^{4})
Tātaihia te i mā te pū o 2, kia riro ko -1.
Re(-\frac{1}{4}i-\left(-2\right)-i^{3}+i^{4})
Whakareatia te 2 ki te -1, ka -2.
Re(-\frac{1}{4}i+2-i^{3}+i^{4})
Ko te tauaro o -2 ko 2.
Re(-\frac{1}{4}i+2-\left(-i\right)+i^{4})
Tātaihia te i mā te pū o 3, kia riro ko -i.
Re(-\frac{1}{4}i+2+i+i^{4})
Ko te tauaro o -i ko i.
Re(i^{4}+2+\frac{3}{4}i)
Mahia ngā tāpiri i roto o -\frac{1}{4}i+2+i.
Re(1+2+\frac{3}{4}i)
Tātaihia te i mā te pū o 4, kia riro ko 1.
Re(3+\frac{3}{4}i)
Mahia ngā tāpiri i roto o 1+2+\frac{3}{4}i.
3
Ko te wāhi tūturu o 3+\frac{3}{4}i ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}