Whakaoti mō y
y=-8
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-8-4y=4\left(y-4\right)\left(y+2\right)\times \frac{1}{4}+4y-16
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(y-4\right)\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4-y,4,y+2.
-8-4y=\left(y-4\right)\left(y+2\right)+4y-16
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
-8-4y=y^{2}-2y-8+4y-16
Whakamahia te āhuatanga tuaritanga hei whakarea te y-4 ki te y+2 ka whakakotahi i ngā kupu rite.
-8-4y=y^{2}+2y-8-16
Pahekotia te -2y me 4y, ka 2y.
-8-4y=y^{2}+2y-24
Tangohia te 16 i te -8, ka -24.
-8-4y-y^{2}=2y-24
Tangohia te y^{2} mai i ngā taha e rua.
-8-4y-y^{2}-2y=-24
Tangohia te 2y mai i ngā taha e rua.
-8-6y-y^{2}=-24
Pahekotia te -4y me -2y, ka -6y.
-8-6y-y^{2}+24=0
Me tāpiri te 24 ki ngā taha e rua.
16-6y-y^{2}=0
Tāpirihia te -8 ki te 24, ka 16.
-y^{2}-6y+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -6 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 16}}{2\left(-1\right)}
Pūrua -6.
y=\frac{-\left(-6\right)±\sqrt{36+4\times 16}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-\left(-6\right)±\sqrt{36+64}}{2\left(-1\right)}
Whakareatia 4 ki te 16.
y=\frac{-\left(-6\right)±\sqrt{100}}{2\left(-1\right)}
Tāpiri 36 ki te 64.
y=\frac{-\left(-6\right)±10}{2\left(-1\right)}
Tuhia te pūtakerua o te 100.
y=\frac{6±10}{2\left(-1\right)}
Ko te tauaro o -6 ko 6.
y=\frac{6±10}{-2}
Whakareatia 2 ki te -1.
y=\frac{16}{-2}
Nā, me whakaoti te whārite y=\frac{6±10}{-2} ina he tāpiri te ±. Tāpiri 6 ki te 10.
y=-8
Whakawehe 16 ki te -2.
y=-\frac{4}{-2}
Nā, me whakaoti te whārite y=\frac{6±10}{-2} ina he tango te ±. Tango 10 mai i 6.
y=2
Whakawehe -4 ki te -2.
y=-8 y=2
Kua oti te whārite te whakatau.
-8-4y=4\left(y-4\right)\left(y+2\right)\times \frac{1}{4}+4y-16
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -2,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(y-4\right)\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4-y,4,y+2.
-8-4y=\left(y-4\right)\left(y+2\right)+4y-16
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
-8-4y=y^{2}-2y-8+4y-16
Whakamahia te āhuatanga tuaritanga hei whakarea te y-4 ki te y+2 ka whakakotahi i ngā kupu rite.
-8-4y=y^{2}+2y-8-16
Pahekotia te -2y me 4y, ka 2y.
-8-4y=y^{2}+2y-24
Tangohia te 16 i te -8, ka -24.
-8-4y-y^{2}=2y-24
Tangohia te y^{2} mai i ngā taha e rua.
-8-4y-y^{2}-2y=-24
Tangohia te 2y mai i ngā taha e rua.
-8-6y-y^{2}=-24
Pahekotia te -4y me -2y, ka -6y.
-6y-y^{2}=-24+8
Me tāpiri te 8 ki ngā taha e rua.
-6y-y^{2}=-16
Tāpirihia te -24 ki te 8, ka -16.
-y^{2}-6y=-16
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-y^{2}-6y}{-1}=-\frac{16}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}+\left(-\frac{6}{-1}\right)y=-\frac{16}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y^{2}+6y=-\frac{16}{-1}
Whakawehe -6 ki te -1.
y^{2}+6y=16
Whakawehe -16 ki te -1.
y^{2}+6y+3^{2}=16+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+6y+9=16+9
Pūrua 3.
y^{2}+6y+9=25
Tāpiri 16 ki te 9.
\left(y+3\right)^{2}=25
Tauwehea y^{2}+6y+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+3=5 y+3=-5
Whakarūnātia.
y=2 y=-8
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}