Aromātai
\frac{29}{12}\approx 2.416666667
Tauwehe
\frac{29}{2 ^ {2} \cdot 3} = 2\frac{5}{12} = 2.4166666666666665
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { 4 } - \frac { 4 } { 3 } - \frac { 1 } { 2 } + 4
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{12}-\frac{16}{12}-\frac{1}{2}+4
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{1}{4} me \frac{4}{3} ki te hautau me te tautūnga 12.
\frac{3-16}{12}-\frac{1}{2}+4
Tā te mea he rite te tauraro o \frac{3}{12} me \frac{16}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13}{12}-\frac{1}{2}+4
Tangohia te 16 i te 3, ka -13.
-\frac{13}{12}-\frac{6}{12}+4
Ko te maha noa iti rawa atu o 12 me 2 ko 12. Me tahuri -\frac{13}{12} me \frac{1}{2} ki te hautau me te tautūnga 12.
\frac{-13-6}{12}+4
Tā te mea he rite te tauraro o -\frac{13}{12} me \frac{6}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{19}{12}+4
Tangohia te 6 i te -13, ka -19.
-\frac{19}{12}+\frac{48}{12}
Me tahuri te 4 ki te hautau \frac{48}{12}.
\frac{-19+48}{12}
Tā te mea he rite te tauraro o -\frac{19}{12} me \frac{48}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{12}
Tāpirihia te -19 ki te 48, ka 29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}