Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{4}\left(x^{2}+2xy+y^{2}\right)-\frac{9}{16}\left(x-y\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x-y\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te x^{2}+2xy+y^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x^{2}-2xy+y^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}x^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{9}{16} ki te x^{2}-2xy+y^{2}.
-\frac{5}{16}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Pahekotia te \frac{1}{4}x^{2} me -\frac{9}{16}x^{2}, ka -\frac{5}{16}x^{2}.
-\frac{5}{16}x^{2}+\frac{13}{8}xy+\frac{1}{4}y^{2}-\frac{9}{16}y^{2}
Pahekotia te \frac{1}{2}xy me \frac{9}{8}xy, ka \frac{13}{8}xy.
-\frac{5}{16}x^{2}+\frac{13}{8}xy-\frac{5}{16}y^{2}
Pahekotia te \frac{1}{4}y^{2} me -\frac{9}{16}y^{2}, ka -\frac{5}{16}y^{2}.
\frac{1}{4}\left(x^{2}+2xy+y^{2}\right)-\frac{9}{16}\left(x-y\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x-y\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te x^{2}+2xy+y^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x^{2}-2xy+y^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}x^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{9}{16} ki te x^{2}-2xy+y^{2}.
-\frac{5}{16}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Pahekotia te \frac{1}{4}x^{2} me -\frac{9}{16}x^{2}, ka -\frac{5}{16}x^{2}.
-\frac{5}{16}x^{2}+\frac{13}{8}xy+\frac{1}{4}y^{2}-\frac{9}{16}y^{2}
Pahekotia te \frac{1}{2}xy me \frac{9}{8}xy, ka \frac{13}{8}xy.
-\frac{5}{16}x^{2}+\frac{13}{8}xy-\frac{5}{16}y^{2}
Pahekotia te \frac{1}{4}y^{2} me -\frac{9}{16}y^{2}, ka -\frac{5}{16}y^{2}.