Whakaoti mō x
x = \frac{31}{11} = 2\frac{9}{11} \approx 2.818181818
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\times 3x+\frac{1}{4}\times 5=\frac{1}{3}\left(5x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te 3x+5.
\frac{3}{4}x+\frac{1}{4}\times 5=\frac{1}{3}\left(5x-4\right)
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}x+\frac{5}{4}=\frac{1}{3}\left(5x-4\right)
Whakareatia te \frac{1}{4} ki te 5, ka \frac{5}{4}.
\frac{3}{4}x+\frac{5}{4}=\frac{1}{3}\times 5x+\frac{1}{3}\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 5x-4.
\frac{3}{4}x+\frac{5}{4}=\frac{5}{3}x+\frac{1}{3}\left(-4\right)
Whakareatia te \frac{1}{3} ki te 5, ka \frac{5}{3}.
\frac{3}{4}x+\frac{5}{4}=\frac{5}{3}x+\frac{-4}{3}
Whakareatia te \frac{1}{3} ki te -4, ka \frac{-4}{3}.
\frac{3}{4}x+\frac{5}{4}=\frac{5}{3}x-\frac{4}{3}
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
\frac{3}{4}x+\frac{5}{4}-\frac{5}{3}x=-\frac{4}{3}
Tangohia te \frac{5}{3}x mai i ngā taha e rua.
-\frac{11}{12}x+\frac{5}{4}=-\frac{4}{3}
Pahekotia te \frac{3}{4}x me -\frac{5}{3}x, ka -\frac{11}{12}x.
-\frac{11}{12}x=-\frac{4}{3}-\frac{5}{4}
Tangohia te \frac{5}{4} mai i ngā taha e rua.
-\frac{11}{12}x=-\frac{16}{12}-\frac{15}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{4}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
-\frac{11}{12}x=\frac{-16-15}{12}
Tā te mea he rite te tauraro o -\frac{16}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{11}{12}x=-\frac{31}{12}
Tangohia te 15 i te -16, ka -31.
x=-\frac{31}{12}\left(-\frac{12}{11}\right)
Me whakarea ngā taha e rua ki te -\frac{12}{11}, te tau utu o -\frac{11}{12}.
x=\frac{-31\left(-12\right)}{12\times 11}
Me whakarea te -\frac{31}{12} ki te -\frac{12}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{372}{132}
Mahia ngā whakarea i roto i te hautanga \frac{-31\left(-12\right)}{12\times 11}.
x=\frac{31}{11}
Whakahekea te hautanga \frac{372}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}