Whakaoti mō x
x<-\frac{3}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\times 3+\frac{1}{4}\left(-2\right)x-2>\frac{1}{3}x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te 3-2x.
\frac{3}{4}+\frac{1}{4}\left(-2\right)x-2>\frac{1}{3}x
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}+\frac{-2}{4}x-2>\frac{1}{3}x
Whakareatia te \frac{1}{4} ki te -2, ka \frac{-2}{4}.
\frac{3}{4}-\frac{1}{2}x-2>\frac{1}{3}x
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{4}-\frac{1}{2}x-\frac{8}{4}>\frac{1}{3}x
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{3-8}{4}-\frac{1}{2}x>\frac{1}{3}x
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{8}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{4}-\frac{1}{2}x>\frac{1}{3}x
Tangohia te 8 i te 3, ka -5.
-\frac{5}{4}-\frac{1}{2}x-\frac{1}{3}x>0
Tangohia te \frac{1}{3}x mai i ngā taha e rua.
-\frac{5}{4}-\frac{5}{6}x>0
Pahekotia te -\frac{1}{2}x me -\frac{1}{3}x, ka -\frac{5}{6}x.
-\frac{5}{6}x>\frac{5}{4}
Me tāpiri te \frac{5}{4} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x<\frac{5}{4}\left(-\frac{6}{5}\right)
Me whakarea ngā taha e rua ki te -\frac{6}{5}, te tau utu o -\frac{5}{6}. I te mea he tōraro a -\frac{5}{6}, ka huri te ahunga koreōrite.
x<\frac{5\left(-6\right)}{4\times 5}
Me whakarea te \frac{5}{4} ki te -\frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x<\frac{-6}{4}
Me whakakore tahi te 5 i te taurunga me te tauraro.
x<-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}