Aromātai
\frac{6413607209}{4}=1603401802.25
Tauwehe
\frac{73 \cdot 283 ^ {2} \cdot 1097}{2 ^ {2}} = 1603401802\frac{1}{4} = 1603401802.25
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { 4 } ( - 283 ) ^ { 4 } - 2 ( - 283 ) ^ { 2 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\times 6414247921-2\left(-283\right)^{2}
Tātaihia te -283 mā te pū o 4, kia riro ko 6414247921.
\frac{6414247921}{4}-2\left(-283\right)^{2}
Whakareatia te \frac{1}{4} ki te 6414247921, ka \frac{6414247921}{4}.
\frac{6414247921}{4}-2\times 80089
Tātaihia te -283 mā te pū o 2, kia riro ko 80089.
\frac{6414247921}{4}-160178
Whakareatia te 2 ki te 80089, ka 160178.
\frac{6414247921}{4}-\frac{640712}{4}
Me tahuri te 160178 ki te hautau \frac{640712}{4}.
\frac{6414247921-640712}{4}
Tā te mea he rite te tauraro o \frac{6414247921}{4} me \frac{640712}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{6413607209}{4}
Tangohia te 640712 i te 6414247921, ka 6413607209.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}