Aromātai
1.995
Tauwehe
\frac{3 \cdot 7 \cdot 19}{2 ^ {3} \cdot 5 ^ {2}} = 1\frac{199}{200} = 1.995
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\left(-\frac{1}{50}\right)+2
Me tahuri ki tau ā-ira -0.02 ki te hautau -\frac{2}{100}. Whakahekea te hautanga -\frac{2}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1\left(-1\right)}{4\times 50}+2
Me whakarea te \frac{1}{4} ki te -\frac{1}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{200}+2
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{4\times 50}.
-\frac{1}{200}+2
Ka taea te hautanga \frac{-1}{200} te tuhi anō ko -\frac{1}{200} mā te tango i te tohu tōraro.
-\frac{1}{200}+\frac{400}{200}
Me tahuri te 2 ki te hautau \frac{400}{200}.
\frac{-1+400}{200}
Tā te mea he rite te tauraro o -\frac{1}{200} me \frac{400}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{399}{200}
Tāpirihia te -1 ki te 400, ka 399.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}