Aromātai
\frac{45216x}{25}
Kimi Pārōnaki e ai ki x
1808.64
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\times \frac{157}{50}\times 48^{2}x
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1\times 157}{4\times 50}\times 48^{2}x
Me whakarea te \frac{1}{4} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{157}{200}\times 48^{2}x
Mahia ngā whakarea i roto i te hautanga \frac{1\times 157}{4\times 50}.
\frac{157}{200}\times 2304x
Tātaihia te 48 mā te pū o 2, kia riro ko 2304.
\frac{157\times 2304}{200}x
Tuhia te \frac{157}{200}\times 2304 hei hautanga kotahi.
\frac{361728}{200}x
Whakareatia te 157 ki te 2304, ka 361728.
\frac{45216}{25}x
Whakahekea te hautanga \frac{361728}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}\times \frac{157}{50}\times 48^{2}x)
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\times 157}{4\times 50}\times 48^{2}x)
Me whakarea te \frac{1}{4} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{200}\times 48^{2}x)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 157}{4\times 50}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157}{200}\times 2304x)
Tātaihia te 48 mā te pū o 2, kia riro ko 2304.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{157\times 2304}{200}x)
Tuhia te \frac{157}{200}\times 2304 hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{361728}{200}x)
Whakareatia te 157 ki te 2304, ka 361728.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{45216}{25}x)
Whakahekea te hautanga \frac{361728}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{45216}{25}x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{45216}{25}x^{0}
Tango 1 mai i 1.
\frac{45216}{25}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{45216}{25}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}