Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{4}\times 4\sqrt{5}-\frac{1}{16}\sqrt{63}-\frac{1}{9}\sqrt{180}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
\sqrt{5}-\frac{1}{16}\sqrt{63}-\frac{1}{9}\sqrt{180}
Me whakakore te 4 me te 4.
\sqrt{5}-\frac{1}{16}\times 3\sqrt{7}-\frac{1}{9}\sqrt{180}
Tauwehea te 63=3^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 7} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{7}. Tuhia te pūtakerua o te 3^{2}.
\sqrt{5}+\frac{-3}{16}\sqrt{7}-\frac{1}{9}\sqrt{180}
Tuhia te -\frac{1}{16}\times 3 hei hautanga kotahi.
\sqrt{5}-\frac{3}{16}\sqrt{7}-\frac{1}{9}\sqrt{180}
Ka taea te hautanga \frac{-3}{16} te tuhi anō ko -\frac{3}{16} mā te tango i te tohu tōraro.
\sqrt{5}-\frac{3}{16}\sqrt{7}-\frac{1}{9}\times 6\sqrt{5}
Tauwehea te 180=6^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 5} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{5}. Tuhia te pūtakerua o te 6^{2}.
\sqrt{5}-\frac{3}{16}\sqrt{7}+\frac{-6}{9}\sqrt{5}
Tuhia te -\frac{1}{9}\times 6 hei hautanga kotahi.
\sqrt{5}-\frac{3}{16}\sqrt{7}-\frac{2}{3}\sqrt{5}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{3}\sqrt{5}-\frac{3}{16}\sqrt{7}
Pahekotia te \sqrt{5} me -\frac{2}{3}\sqrt{5}, ka \frac{1}{3}\sqrt{5}.