Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō k
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Me whakarea ngā taha e rua o te whārite ki te 4\left(k-8\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(1-x\right)\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-1+x\right)
Hei kimi i te tauaro o 1-x, kimihia te tauaro o ia taurangi.
k^{2}-16k+64=4\left(4k^{2}+8k+3+x\right)
Tangohia te 1 i te 4, ka 3.
k^{2}-16k+64=16k^{2}+32k+12+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4k^{2}+8k+3+x.
16k^{2}+32k+12+4x=k^{2}-16k+64
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
32k+12+4x=k^{2}-16k+64-16k^{2}
Tangohia te 16k^{2} mai i ngā taha e rua.
32k+12+4x=-15k^{2}-16k+64
Pahekotia te k^{2} me -16k^{2}, ka -15k^{2}.
12+4x=-15k^{2}-16k+64-32k
Tangohia te 32k mai i ngā taha e rua.
12+4x=-15k^{2}-48k+64
Pahekotia te -16k me -32k, ka -48k.
4x=-15k^{2}-48k+64-12
Tangohia te 12 mai i ngā taha e rua.
4x=-15k^{2}-48k+52
Tangohia te 12 i te 64, ka 52.
4x=52-48k-15k^{2}
He hanga arowhānui tō te whārite.
\frac{4x}{4}=\frac{52-48k-15k^{2}}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{52-48k-15k^{2}}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x=-\frac{15k^{2}}{4}-12k+13
Whakawehe -15k^{2}-48k+52 ki te 4.