Whakaoti mō x
x=-\frac{15k^{2}}{4}-12k+13
k\neq 8
Whakaoti mō k (complex solution)
\left\{\begin{matrix}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&\text{unconditionally}\\k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\text{ and }x\leq \frac{113}{5}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\leq \frac{113}{5}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Me whakarea ngā taha e rua o te whārite ki te 4\left(k-8\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(1-x\right)\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-1+x\right)
Hei kimi i te tauaro o 1-x, kimihia te tauaro o ia taurangi.
k^{2}-16k+64=4\left(4k^{2}+8k+3+x\right)
Tangohia te 1 i te 4, ka 3.
k^{2}-16k+64=16k^{2}+32k+12+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4k^{2}+8k+3+x.
16k^{2}+32k+12+4x=k^{2}-16k+64
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
32k+12+4x=k^{2}-16k+64-16k^{2}
Tangohia te 16k^{2} mai i ngā taha e rua.
32k+12+4x=-15k^{2}-16k+64
Pahekotia te k^{2} me -16k^{2}, ka -15k^{2}.
12+4x=-15k^{2}-16k+64-32k
Tangohia te 32k mai i ngā taha e rua.
12+4x=-15k^{2}-48k+64
Pahekotia te -16k me -32k, ka -48k.
4x=-15k^{2}-48k+64-12
Tangohia te 12 mai i ngā taha e rua.
4x=-15k^{2}-48k+52
Tangohia te 12 i te 64, ka 52.
4x=52-48k-15k^{2}
He hanga arowhānui tō te whārite.
\frac{4x}{4}=\frac{52-48k-15k^{2}}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{52-48k-15k^{2}}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x=-\frac{15k^{2}}{4}-12k+13
Whakawehe -15k^{2}-48k+52 ki te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}