Whakaoti mō x
x=\frac{\sqrt{33}}{12}+\frac{1}{4}\approx 0.728713554
x=-\frac{\sqrt{33}}{12}+\frac{1}{4}\approx -0.228713554
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+3x\left(-2\right)=2x\times 3x+3x\left(-3\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x.
1-6x=2x\times 3x+3x\left(-3\right)
Whakareatia te 3 ki te -2, ka -6.
1-6x=2x^{2}\times 3+3x\left(-3\right)
Whakareatia te x ki te x, ka x^{2}.
1-6x=6x^{2}+3x\left(-3\right)
Whakareatia te 2 ki te 3, ka 6.
1-6x=6x^{2}-9x
Whakareatia te 3 ki te -3, ka -9.
1-6x-6x^{2}=-9x
Tangohia te 6x^{2} mai i ngā taha e rua.
1-6x-6x^{2}+9x=0
Me tāpiri te 9x ki ngā taha e rua.
1+3x-6x^{2}=0
Pahekotia te -6x me 9x, ka 3x.
-6x^{2}+3x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-6\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 3 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-6\right)}}{2\left(-6\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+24}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-3±\sqrt{33}}{2\left(-6\right)}
Tāpiri 9 ki te 24.
x=\frac{-3±\sqrt{33}}{-12}
Whakareatia 2 ki te -6.
x=\frac{\sqrt{33}-3}{-12}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{33}}{-12} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{33}.
x=-\frac{\sqrt{33}}{12}+\frac{1}{4}
Whakawehe -3+\sqrt{33} ki te -12.
x=\frac{-\sqrt{33}-3}{-12}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{33}}{-12} ina he tango te ±. Tango \sqrt{33} mai i -3.
x=\frac{\sqrt{33}}{12}+\frac{1}{4}
Whakawehe -3-\sqrt{33} ki te -12.
x=-\frac{\sqrt{33}}{12}+\frac{1}{4} x=\frac{\sqrt{33}}{12}+\frac{1}{4}
Kua oti te whārite te whakatau.
1+3x\left(-2\right)=2x\times 3x+3x\left(-3\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x.
1-6x=2x\times 3x+3x\left(-3\right)
Whakareatia te 3 ki te -2, ka -6.
1-6x=2x^{2}\times 3+3x\left(-3\right)
Whakareatia te x ki te x, ka x^{2}.
1-6x=6x^{2}+3x\left(-3\right)
Whakareatia te 2 ki te 3, ka 6.
1-6x=6x^{2}-9x
Whakareatia te 3 ki te -3, ka -9.
1-6x-6x^{2}=-9x
Tangohia te 6x^{2} mai i ngā taha e rua.
1-6x-6x^{2}+9x=0
Me tāpiri te 9x ki ngā taha e rua.
1+3x-6x^{2}=0
Pahekotia te -6x me 9x, ka 3x.
3x-6x^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-6x^{2}+3x=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-6x^{2}+3x}{-6}=-\frac{1}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\frac{3}{-6}x=-\frac{1}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}-\frac{1}{2}x=-\frac{1}{-6}
Whakahekea te hautanga \frac{3}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{1}{2}x=\frac{1}{6}
Whakawehe -1 ki te -6.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{6}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{6}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{11}{48}
Tāpiri \frac{1}{6} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{11}{48}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{11}{48}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{33}}{12} x-\frac{1}{4}=-\frac{\sqrt{33}}{12}
Whakarūnātia.
x=\frac{\sqrt{33}}{12}+\frac{1}{4} x=-\frac{\sqrt{33}}{12}+\frac{1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}