Whakaoti mō x
x=-\frac{5}{9}\approx -0.555555556
x=0
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { 3 x + 1 } + \frac { 2 } { x + 1 } = 3
Tohaina
Kua tāruatia ki te papatopenga
x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,-\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+1\right)\left(3x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x+1,x+1.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+1 ki te 2.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
Pahekotia te x me 6x, ka 7x.
7x+3=3\left(x+1\right)\left(3x+1\right)
Tāpirihia te 1 ki te 2, ka 3.
7x+3=\left(3x+3\right)\left(3x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
7x+3=9x^{2}+12x+3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+3 ki te 3x+1 ka whakakotahi i ngā kupu rite.
7x+3-9x^{2}=12x+3
Tangohia te 9x^{2} mai i ngā taha e rua.
7x+3-9x^{2}-12x=3
Tangohia te 12x mai i ngā taha e rua.
-5x+3-9x^{2}=3
Pahekotia te 7x me -12x, ka -5x.
-5x+3-9x^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
-5x-9x^{2}=0
Tangohia te 3 i te 3, ka 0.
-9x^{2}-5x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, -5 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±5}{2\left(-9\right)}
Tuhia te pūtakerua o te \left(-5\right)^{2}.
x=\frac{5±5}{2\left(-9\right)}
Ko te tauaro o -5 ko 5.
x=\frac{5±5}{-18}
Whakareatia 2 ki te -9.
x=\frac{10}{-18}
Nā, me whakaoti te whārite x=\frac{5±5}{-18} ina he tāpiri te ±. Tāpiri 5 ki te 5.
x=-\frac{5}{9}
Whakahekea te hautanga \frac{10}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{-18}
Nā, me whakaoti te whārite x=\frac{5±5}{-18} ina he tango te ±. Tango 5 mai i 5.
x=0
Whakawehe 0 ki te -18.
x=-\frac{5}{9} x=0
Kua oti te whārite te whakatau.
x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,-\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+1\right)\left(3x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x+1,x+1.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+1 ki te 2.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
Pahekotia te x me 6x, ka 7x.
7x+3=3\left(x+1\right)\left(3x+1\right)
Tāpirihia te 1 ki te 2, ka 3.
7x+3=\left(3x+3\right)\left(3x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
7x+3=9x^{2}+12x+3
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+3 ki te 3x+1 ka whakakotahi i ngā kupu rite.
7x+3-9x^{2}=12x+3
Tangohia te 9x^{2} mai i ngā taha e rua.
7x+3-9x^{2}-12x=3
Tangohia te 12x mai i ngā taha e rua.
-5x+3-9x^{2}=3
Pahekotia te 7x me -12x, ka -5x.
-5x-9x^{2}=3-3
Tangohia te 3 mai i ngā taha e rua.
-5x-9x^{2}=0
Tangohia te 3 i te 3, ka 0.
-9x^{2}-5x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-9x^{2}-5x}{-9}=\frac{0}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\left(-\frac{5}{-9}\right)x=\frac{0}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}+\frac{5}{9}x=\frac{0}{-9}
Whakawehe -5 ki te -9.
x^{2}+\frac{5}{9}x=0
Whakawehe 0 ki te -9.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\left(\frac{5}{18}\right)^{2}
Whakawehea te \frac{5}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{18}. Nā, tāpiria te pūrua o te \frac{5}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{25}{324}
Pūruatia \frac{5}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{5}{18}\right)^{2}=\frac{25}{324}
Tauwehea x^{2}+\frac{5}{9}x+\frac{25}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{18}=\frac{5}{18} x+\frac{5}{18}=-\frac{5}{18}
Whakarūnātia.
x=0 x=-\frac{5}{9}
Me tango \frac{5}{18} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}