Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3-2\sqrt{2}}-2\sqrt{2}+6
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{3+2\sqrt{2}}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}-2\sqrt{2}+6
Whakangāwaritia te tauraro o \frac{1}{3-2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3+2\sqrt{2}.
\frac{3+2\sqrt{2}}{3^{2}-\left(-2\sqrt{2}\right)^{2}}-2\sqrt{2}+6
Whakaarohia te \left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3+2\sqrt{2}}{9-\left(-2\sqrt{2}\right)^{2}}-2\sqrt{2}+6
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{3+2\sqrt{2}}{9-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}-2\sqrt{2}+6
Whakarohaina te \left(-2\sqrt{2}\right)^{2}.
\frac{3+2\sqrt{2}}{9-4\left(\sqrt{2}\right)^{2}}-2\sqrt{2}+6
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{3+2\sqrt{2}}{9-4\times 2}-2\sqrt{2}+6
Ko te pūrua o \sqrt{2} ko 2.
\frac{3+2\sqrt{2}}{9-8}-2\sqrt{2}+6
Whakareatia te 4 ki te 2, ka 8.
\frac{3+2\sqrt{2}}{1}-2\sqrt{2}+6
Tangohia te 8 i te 9, ka 1.
3+2\sqrt{2}-2\sqrt{2}+6
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
3+6
Pahekotia te 2\sqrt{2} me -2\sqrt{2}, ka 0.
9
Tāpirihia te 3 ki te 6, ka 9.