Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{1}{3-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3+\sqrt{2}.
\frac{3+\sqrt{2}}{3^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3+\sqrt{2}}{9-2}
Pūrua 3. Pūrua \sqrt{2}.
\frac{3+\sqrt{2}}{7}
Tangohia te 2 i te 9, ka 7.